# Asymptotics and Statistics on Fishburn matrices

Emma Yu Jin School of Mathematical Sciences, Xiamen University



Joint work with Hsien-Kuei Hwang and Michael J. Schlosser UBC Discrete Siminar November 15, 2022

# An overview of my previous research



# Outline:

- 1. Combinatorial background of the Fishburn family
- 2. Generating functions and *q*-series
- 3. Transformations of basic hypergeometric series
- 4. Asymptotics and statistics on Fishburn structures
- 5. Concluding remarks

# 1. Combinatorial background of the Fishburn family

## Fishburn matrices

Fishburn matrices are non-negative, upper-triangular square matrices with at least one positive entry in each row and column.

E.g. there are 15 Fishburn matrices of size (the sum of entries) 4:

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The number of Fishburn matrices of a given size are known as Fishburn numbers (A022493 of the OEIS). Their first few values are (1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, ...)

## Fishburn numbers

Fishburn numbers are the coefficients of the formal power series

$$\sum_{m=0}^{\infty} \prod_{i=1}^{m} (1 - (1 - z)^{i}) = 1 + z + 2z^{2} + 5z^{3} + 15z^{4} + 53z^{5} + \cdots,$$

which count the Fishburn matrices of a fixed dimension. This generating function was derived by Zagier (2001). Subsequently Andrews and Jelínek (2013) found an equivalent form:

$$\sum_{m=0}^{\infty} \prod_{i=1}^{m} (1 - (1 - z)^{i}) = \sum_{k=0}^{\infty} \frac{1}{(1 - z)^{k+1}} \prod_{i=1}^{k} \left( 1 - \left(\frac{1}{1 - z}\right)^{i} \right)^{2}$$

by applying the Rogers–Fine identity:

$$\sum_{n=0}^{\infty} \frac{(aq;q)_n}{(bq;q)_n} t^n = \sum_{n=0}^{\infty} \frac{(aq;q)_n (\frac{atq}{b};q)_n b^n t^n q^{n^2} (1 - atq^{2n+1})}{(bq;q)_n (t;q)_{n+1}}$$

holds when |q| < 1, |t| < 1 and  $b \neq q^k$  for k < 0.

## Fishburn numbers

The study of Fishburn numbers and their generalizations has remarkably led to many interesting results, including for instance

- Congruences (Garvan 2015, Andrews–Sellers 2016, Bijaoui–Boden–Myers–Osburn–Rushworth–Tronsgard–Zhou 2020),
- Asymptotic formulas (Zagier 2001, Jelínek 2012, Bringmann–Li–Rhoades 2014, Hwang–J. 2019),
- q-series (Andrews-Jelínek 2013, J.-Schlosser 2020),
- A variety of bijections (Bousquet-Mélou–Claesson–Dukes–Kitaev 2010, Claesson–Linusson 2011, Dukes–Parviainen 2010, Levande 2013, Fu–J.–Lin–Yan–Zhou 2019, Dukes–McNamara 2019, Auli–Elizalde 2020),
- Generating functions (Bousquet-Mélou–Claesson–Dukes–Kitaev 2010, Dukes–Kitaev–Remmel–Steingrímsson 2011, Jelínek 2012, Zagier 2001).

## Statistics on members of the Fishburn family



# 2. Generating functions and *q*-series

## Refined generating functions

Let  $\mathcal{F}(z, v)$  be the generating function of Fishburn matrices with respect to size (variable z) and dimension (variable v):

$$egin{aligned} & \mathsf{F}(z,v) \coloneqq \sum_{n=1}^\infty z^n \sum_{A\in\mathcal{F}_n} v^{\dim(A)}, \ & = \sum_{k=1}^\infty rac{v\,(1-z)^k}{1-v+v(1-z)^k} \prod_{j=1}^k (1-(1-z)^j), \ & = \sum_{k=0}^\infty v^{k+1} \prod_{j=1}^{k+1} rac{1-(1-z)^j}{v+(1-v)(1-z)^j}. \end{aligned}$$

The first one was derived by Jelínek (2012) via the Fishburn matrices, and the second one was found by Fu-J.-Lin-Yan-Zhou (2019) by a new decomposition of ascent sequences. Subsequently, J.-Schlosser (2022) used the Sears transformation to establish more equivalent forms.

#### Fishburn matrices and two variations

Generating functions Definitions

row-Fishburn matrices

$$\sum_{m=1}^{\infty} \prod_{i=1}^{m} ((1-z)^{-i} - 1)$$

non-negative; upper-triangular; each row has one positive entry.

Fishburn matrices  $\sum_{m=1}^{\infty} \prod_{i=1}^{m} (1 - (1 - z)^{i}) + each column$ has one positive entry.

self-dual  $\sum_{m=0}^{\infty} (1-z)^{-m-1} \prod_{i=1}^{m} ((1-z^2)^{-i}-1) + \text{persymmetric}$ matrices m=0

Ref. Jelínek, Counting general and self-dual interval orders, 2012. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, 2001.

# 3. Transformations of basic hypergeometric series

Transformations of basic hypergeometric series For indeterminates a and q (the latter is referred to as the base), and non-negative integer k, the basic shifted factorial (or q-shifted factorial) is defined as

$$(a;q)_k := \prod_{j=1}^k (1 - aq^{j-1}), \quad \text{also for } k = \infty.$$

For brevity, we write

$$(a_1,\ldots,a_m;q)_k:=(a_1;q)_k\cdots(a_m;q)_k.$$

The Rogers-Fine identity:

$$\sum_{n=0}^{\infty} \frac{(aq;q)_n}{(bq;q)_n} t^n = \sum_{n=0}^{\infty} \frac{(aq;q)_n (\frac{atq}{b};q)_n b^n t^n q^{n^2} (1 - atq^{2n+1})}{(bq;q)_n (t;q)_{n+1}}$$
  
holds when  $|q| < 1$ ,  $|t| < 1$  and  $b \neq q^k$  for  $k < 0$ .

## A generalized Rogers–Fine identity

A generalized Rogers–Fine identity due to Andrews–Jelínek (2013): For any r and  $\gamma$ , they proved the following identity of formal power series in x and y:

$$\sum_{n=0}^{\infty} \frac{(\gamma(r(1-x))^{-1}; 1-x)_n((1-y)^{-1}; (1-x)^{-1})_n}{(\gamma; 1-x)_n} r^n$$
  
= 
$$\sum_{n=0}^{\infty} (1-y)(1-x)^n \frac{(1-y; 1-x)_n(r(1-x); 1-x)_n}{(\gamma; 1-x)_n},$$

where  $(a; q)_n := (1 - a)(1 - aq) \cdots (1 - aq^{n-1}).$ 

This is a generalized Rogers–Fine identity. Andrews–Jelínek also asked for a combinatorial interpretation of this identity. We provide one in terms of Fishburn matrices for a special case of this identity.

#### A generalized Rogers–Fine identity

Substituting r = 1,  $\gamma = (v - 1)v^{-1}(1 - z)^{-1}$ ,  $x = y = 1 - (1 - z)^{-1}$ shows that

$$\sum_{k=0}^{\infty}rac{(1-z)^k}{1-v+v(1-z)^k}\prod_{j=1}^k(1-(1-z)^j) \ =\sum_{k=0}^{\infty}rac{1}{(1-z)^{k+1}}\prod_{j=1}^krac{((1-z)^{-j}-1)^2}{1-(v-1)v^{-1}(1-z)^{-j}}.$$

Recall that Jelínek (2012) found the generating function of Fishburn matrices with respect to dimension and size

$$F(z, v) := \sum_{n=1}^{\infty} z^n \sum_{A \in \mathcal{F}_n} v^{dim(A)}$$
  
=  $\sum_{k=1}^{\infty} \frac{v (1-z)^k}{1-v+v(1-z)^k} \prod_{j=1}^k (1-(1-z)^j).$ 

15

## A generalized Rogers–Fine identity

This leads to an equivalent form of F(z, v):

$$F(z, v) = -v + \sum_{k=0}^{\infty} \frac{v}{(1-z)^{k+1}} \prod_{j=1}^{k} \frac{v((1-z)^{-j}-1)^2}{1-(v-1)((1-z)^{-j}-1)},$$
  
$$= \sum_{k=1}^{\infty} \frac{v(1-z)^k}{1-v+v(1-z)^k} \prod_{j=1}^{k} (1-(1-z)^j),$$
  
$$= \sum_{k=0}^{\infty} v^{k+1} \prod_{j=1}^{k+1} \frac{1-(1-z)^j}{v+(1-v)(1-z)^j}.$$

The first form of F(z, v) is more suitable (than the other two below) for the saddle-point approach. While the Taylor expansion of inner product still contains, in general, negative coefficients, it plays asymptotically only a perturbative role when v is close to 1.

# 4. Asymptotics and statistics on Fishburn structures

## Asymptotics of Fishburn numbers

Let  $f_n$  be the *n*-th Fishburn number, that is,

$$f_n = [z^n] \sum_{m=1}^{\infty} \prod_{i=1}^m (1 - (1 - z)^i).$$

Theorem (Zagier, 2001)

$$f_n = n! \left(\frac{6}{\pi^2}\right)^n \sqrt{n} \left(\frac{12\sqrt{3}}{\pi^{5/2}} e^{\pi^2/12} + O(n^{-1})\right)$$

**Remark:** Zagier first guessed the formula numerically, then he proved an identity via the modular-form approach, by which the estimation of  $f_n$  follows immediately. For more details, we refer to the paper:

Ref. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function. Topology, 2001.

#### Asymptotics of Fishburn numbers

How to guess the formula numerically (see Jelínek's talk in PP 2017):

- 1. Compute  $f_n$  for large n = N (as large as possible).
- 2. Make the Ansatz  $f_n \approx c^n n! n^{\alpha}$  for some constant c.
- 3. Define  $r_n = f_{n+1}/(nf_n)$ , then  $\lim_{n\to\infty} r_n = c$ . Wanted c.
- 4. For a sequence  $(a_n)_{n \in N}$ , let  $\Delta(a_n) = a_{n+1} a_n$ .
- 5. Observe for fixed integer  $d \neq 0$ ,  $\Delta(n^d) = dn^{d-1} + O(n^{d-2})$ .
- 6. Suppose  $r_n = c + \alpha_1 n^{-1} + \alpha_2 n^{-2} + \cdots$  for constants  $\alpha_i$ .
- 7. Then  $nr_n = cn + \alpha_1 + \alpha_2 n^{-1}$  and  $\Delta(nr_n) = c + O(n^{-2})$ .

8. For fixed positive integer k,  $\Delta^{(k)}(n^{k}r_{n}k!^{-1}) = c + O(n^{-k-1})$ . 9. Set k = 1000 and define  $t_{n} = \Delta^{(k)}(n^{k}r_{n}k!^{-1})$ . Then  $|t_{1000} - 6/\pi^{2}| < 10^{-180}$ , suggesting that  $t_{n} \to 6/\pi^{2}$  and also  $r_{n} \to 6/\pi^{2}$ .

## Asymptotics of row-Fishburn numbers

Let  $g_n$  be the number of row-Fishburn matrices such that the sum of all entries is n. By using the numerical techniques from Zagier, Jelínek (2012) conjectured that

$$g_n = n! \left(\frac{12}{\pi^2}\right)^n \left(\frac{6\sqrt{2}}{\pi^2}e^{\pi^2/24} + O(n^{-1})\right).$$

This conjecture was affirmed by Bringmann, Li and Rhoades (2014).

$$\sum_{n\geq 1}^{\infty} g_n z^n = \sum_{n=0}^{\infty} \prod_{i=0}^n \left( \frac{1}{(1-z)^{i+1}} - 1 \right).$$
$$(g_n)_{n=1}^8 = (1, 3, 12, 61, 380, 2815, 24213, 237348...)$$

Ref. Bringmann, Y. Li and R.C. Rhoades, Asymptotics for the number of row-Fishburn matrices, Eur. J. Comb., 2014.

#### Fishburn matrices and two variations

Generating functions

row-Fishburn matrices

$$\sum_{m=1}^{\infty} \prod_{i=1}^{m} ((1-z)^{-i} - 1)$$

non-negative; upper-triangular; each row has one positive entry.

Definitions

Fishburn matrices

$$\sum_{m=1}^{\infty} \prod_{i=1}^{m} (1 - (1 - z)^{i})$$

+ each column has one positive entry.

self-dual  $\sum_{m=0}^{\infty} (1-z)^{-m-1} \prod_{i=1}^{m} ((1-z^2)^{-i}-1) + \text{persymmetric}$ matrices m=0

Ref. Jelínek, Counting general and self-dual interval orders, 2012. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, 2001.

## Asymptotics of self-dual Fishburn numbers

Let  $r_n$  be the number of self-dual Fishburn matrices such that the sum of all entries is n. By using the numerical techniques from Zagier, Jelínek conjectured that

$$r_n = (\gamma + O(n^{-1/2}))\sqrt{n} \left(\frac{6n}{\pi^2 e}\right)^{n/2} 2^{\sqrt{6n}/\pi},$$
  
where  $\gamma \approx 1.361951039.$ 

Jelínek presented the generating function of  $r_n$ :

$$\sum_{n\geq 1}^{\infty} r_n t^n = \sum_{n=0}^{\infty} \frac{1}{(1-x)^{n+1}} \prod_{i=1}^n \left( \frac{1}{(1-x^2)^i} - 1 \right).$$

Hwang–J. (2020) solved this remaining conjecture and deduced that  $\gamma = \frac{3}{\pi^{\frac{3}{2}}} e^{\frac{\pi^2}{24} - \frac{1}{4}} 2^{\frac{3\log 2}{2\pi^2} + 1} \approx 1.361951039.$ 

Remark: It is quite difficult to guess an expression of  $\gamma$ .

# A two-stage saddle-point analysis

Hsien-Kuei Hwang and J. (2020) developed a two-stage saddle-point approach to directly attack the corresponding asymptotic approximations, neglecting the exactness nature of the modular form which is a strong and rare property.

- reprove Zagier's theorem (2001) on the asymptotics of the Fishburn numbers;
- reprove Bringmann-Li-Rhoades's theorem (2014) on the asymptotic number of row-Fishburn matrices;
- confirm a conjecture of Jelínek (2012) on the asymptotic number of self-dual Fishburn matrices;
- solve one open problem proposed by Jelínek (2012) and Bringmann–Li–Rhoades (2014) on the limiting distribution of Stirling statistics  $(\mathcal{N}(\log n, \log n));$
- establish the limiting distributions of several statistics with a similar sum-of-finite-product form for their g.f.s.

## Statistics on members of the Fishburn family



On the limiting shape of random Fishburn matrices Recently Hwang–J.–Schlosser (2022) find that this two-stage saddle-point approach combined with transformation formulas of basic hypergeometric series is applicable to a wider class of problems:

 (an open problem of Bringmann–Li–Rhoades 2014) Assume that all Fishburn matrices of size *n* are equally likely to be selected. Then

the dimension 
$$X_n \sim \mathcal{N}\left(\frac{6n}{\pi^2}, \frac{3(12-\pi^2)n}{\pi^4}\right)$$
;

(an extended open problem of Jelínek 2012) Assume that λ(z) is a polynomial with λ(1) > 1 and that all λ-Fishburn matrices of dimension n are equally likely to be selected. Then

the size 
$$Y_n \sim \mathcal{N}\left(\frac{\lambda'(1)}{2\lambda(1)}n^2, \frac{n^2}{2}\left(\frac{\lambda'(1)+\lambda''(1)}{\lambda(1)}-\left(\frac{\lambda'(1)}{\lambda(1)}\right)^2\right)\right)$$
;

• a conjecture of Stoimenow (1998).

On the limiting shape of random Fishburn matrices

Theorem (Hwang–J. 2020, Hwang–J.–Schlosser 2022) Assume that all Fishburn matrices of size n are equally likely to be selected. For a random Fishburn matrix of size n, we have

| First row sum                    | $\mathcal{N}(\log n, \log n)$                                                        | Stirling |
|----------------------------------|--------------------------------------------------------------------------------------|----------|
| Diagonal sum                     | $\mathcal{N}(2\log n, 2\log n)$                                                      |          |
| # smallest<br>nonzero<br>entries | $n-2\mathcal{P}$ oisson $\left(\frac{\pi^2}{6}\right)$                               |          |
| Dimension                        | $\left  \mathcal{N}\left(\frac{6n}{\pi^2},\frac{3(12-\pi^2)n}{\pi^4}\right) \right.$ | Eulerian |

Remark: we see that in a typical random Fishburn matrix, entries equal to 1 are ubiquitous, those to 2 appear like a Poisson distribution, and the rest is asymptotically negligible.

# A conjecture of Stoimenow (1998)

Theorem (Hwang–J.–Schlosser 2022, a conjecture of Stoimenow 1998) Let  $f_n$  be the number of rLCDs of size n (which equals the nth Fishburn number), and  $g_n$  be the number of connected ones of size n. Then,

$$g_n f_n^{-1} = e^{-1}(1 + O(n^{-1})).$$

Regular linearized chord diagrams (rLCD) is a matching of the set [2n] such that it has no nested pair of arcs whose openers or the closers are next to each other.



An rLCD is connected if any arc intersects some other arcs.

# Some progress towards Stoimenow's conjecture Theorem (Zagier 2001) The generating function $g(z) = \sum_{n=1}^{\infty} g_n z^n = z + z^2 + 2z^3 + 5z^4 + 16z^5 + 63z^6 + 293z^7 + \cdots$

of connected rLCDs of size n satisfies  $\Phi(z, g(z)) = 1$  where

$$\Phi(z,v) = rac{1}{1+v} \sum_{n=0}^{\infty} \prod_{i=1}^{n} rac{1-(1-z)^{i}}{1+v(1-z)^{i}}.$$

Remark by Bringmann–Li–Rhoades (2014):

" $\Phi(z,1)$  is a quantum modular form related to the half-derivative of a weight 1/2 modular form, similar to the situation arising for the Kontsevich's strange function

$$F(q) = \sum_{n=0}^{\infty} \prod_{i=1}^{n} (1-q^i).$$

What role, if any, do modular forms play in the estimation of  $g_n$ ?"

## Saddle point method

We will derive the well-known Stirling formula

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

via the saddle point method. This simplest case will show you how to apply the saddle point method. Our goal is to estimate the coefficients of exponential generating function  $(n!)^{-1} = [z^n]exp(z)$ , we start with

$$[z^n]e^z = \frac{1}{\sqrt{2\pi i}} \int_{|z|=r} \frac{e^z}{z^{n+1}} \mathrm{d}z$$

where r is chosen to be the solution of  $(e^{z}z^{-n-1})' = 0$  and r = n+1 is called saddle point. The saddle point corresponds locally to a maximum of the integrand along the path. It is natural to expect that a small neighbourhood of the saddle point may provide the dominant contribution to the integral.

# Saddle-point method



The modulus of the integrand  $|e^z/z^{n+1}|$  for n = 4.

#### Saddle point method

Proof sketch: Switch to polar coordinates and set  $z = ne^{i\theta}$ . Then,

$$[z^n]e^z = \frac{1}{\sqrt{2\pi i}} \int_{|z|=n} \frac{e^z}{z^{n+1}} dz$$
$$= \frac{e^n}{n^n} \cdot \frac{1}{2\pi} \int_{-\pi}^{+\pi} e^{n(e^{i\theta} - 1 - i\theta)} d\theta.$$

We choose  $\theta_0 = n^{-2/5}$  such that  $n\theta_0^2 \to \infty$  and  $n\theta_0^3 \to 0$ . Then

$$\int_{-\theta_0}^{+\theta_0} e^{n(e^{i\theta}-1-i\theta)} d\theta = \int_{-n^{-2/5}}^{+n^{-2/5}} e^{-n\theta^2/2} d\theta (1+O(n^{-1/5}))$$
$$\sim \frac{1}{\sqrt{n}} \int_{-\infty}^{+\infty} e^{-t^2/2} dt = \sqrt{\frac{2\pi}{n}} \rightarrow \text{major part}$$
$$\int_{\theta_0}^{2\pi-\theta_0} e^{n(e^{i\theta}-1-i\theta)} d\theta = O(\exp(-Cn^{1/5})) \rightarrow \text{minor part}$$

5. Concluding remarks

# Concluding remarks

1. Two interesting generating functions on the Euler numbers:

$$\sum_{k=0}^{\infty} \prod_{j=1}^{k} \tanh(2jz) = \sum_{n=0}^{\infty} \frac{E_{2n+1}}{n!} z^{n}$$
$$\sum_{k=0}^{\infty} \operatorname{sech}((2k+1)z) \prod_{j=1}^{k} \tanh((2j-1)z) = \sum_{n=0}^{\infty} \frac{E_{2n}}{n!} z^{n}$$

These two equations are special cases of general theorems proved by Andrews–Jiménez-Urroz–Ono 2001 and Lovejoy–Ono (2003), respectively.

They have a sum-of-finite-product form. Is there a combinatorial interpretation of these two equations? An inclusion-exclusion process is expected.

# Concluding remarks

2. Recall that  $\Phi(z, g(z)) = 1$  where

$$\Phi(z,v) = \frac{1}{1+v} \sum_{n=0}^{\infty} \prod_{i=1}^{n} \frac{1-(1-z)^{i}}{1+v(1-z)^{i}}.$$

Remark by Bringmann–Li–Rhoades (2014):

" $\Phi(z,1)$  is a quantum modular form related to the half-derivative of a weight 1/2 modular form, similar to the situation arising for the Kontsevich's strange function

$$F(q) = \sum_{n=0}^{\infty} \prod_{i=1}^{n} (1-q^i).$$

What role, if any, do modular forms play in the estimation of  $g_n$ ?"

# Thank you for your attention!