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1. Combinatorial background of the Fishburn family



Fishburn matrices
Fishburn matrices are non-negative, upper-triangular square matrices
with at least one positive entry in each row and column.

�
4

�
,

⇣
1 2

0 1

⌘
,

⇣
2 1

0 1

⌘
,

⇣
1 1

0 2

⌘
,

⇣
2 0

0 2

⌘
,

⇣
3 0

0 1

⌘

⇣
1 0

0 3

⌘
,

✓
1 1 0

0 1 0

0 0 1

◆
,

✓
1 0 1

0 1 0

0 0 1

◆
,

✓
1 0 0

0 1 1

0 0 1

◆
,

✓
2 0 0

0 1 0

0 0 1

◆
,

✓
1 0 0

0 2 0

0 0 1

◆
,

✓
1 0 0

0 1 0

0 0 2

◆
,

✓
1 1 0

0 0 1

0 0 1

◆ 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

!

E.g. there are 15 Fishburn matrices of size (the sum of entries) 4:

The number of Fishburn matrices of a given size are known as
Fishburn numbers (A022493 of the OEIS). Their first few values are
(1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, . . .)
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Fishburn numbers
Fishburn numbers are the coe�cients of the formal power series

1X

m=0

mY

i=1

(1� (1� z)i ) = 1 + z + 2z2 + 5z3 + 15z4 + 53z5 + · · · ,

which count the Fishburn matrices of a fixed dimension. This
generating function was derived by Zagier (2001). Subsequently
Andrews and Jeĺınek (2013) found an equivalent form:

1X

m=0

mY

i=1

(1� (1� z)i ) =
1X

k=0

1

(1� z)k+1

kY

i=1

 
1�

✓
1

1� z

◆i
!2

by applying the Rogers–Fine identity:
1X

n=0

(aq; q)n
(bq; q)n

tn =
1X

n=0

(aq; q)n(
atq

b
; q)nbntnqn

2

(1� atq2n+1)

(bq; q)n(t; q)n+1

holds when |q| < 1, |t| < 1 and b 6= qk for k < 0.
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The study of Fishburn numbers and their generalizations has
remarkably led to many interesting results, including for instance

• Congruences (Garvan 2015, Andrews–Sellers 2016,
Bijaoui–Boden–Myers–Osburn–Rushworth–Tronsgard–Zhou 2020),

• Asymptotic formulas (Zagier 2001, Jeĺınek 2012,
Bringmann–Li–Rhoades 2014, Hwang–J. 2019),

• q-series (Andrews–Jeĺınek 2013, J.–Schlosser 2020),

• A variety of bijections (Bousquet-Mélou–Claesson–Dukes–Kitaev
2010, Claesson–Linusson 2011, Dukes–Parviainen 2010, Levande
2013, Fu–J.–Lin–Yan–Zhou 2019, Dukes–McNamara 2019,
Auli–Elizalde 2020),

• Generating functions (Bousquet-Mélou–Claesson–Dukes–Kitaev
2010, Dukes–Kitaev–Remmel–Steingŕımsson 2011, Jeĺınek 2012,
Zagier 2001).

Fishburn numbers



Statistics on members of the Fishburn family

(2+2)-free posets

magnitude
Regular linearized chord diagrams

length of the initial run of openers

(2|3̄1)-avoiding perms.
des, iasc

(2–1)-avoiding

# minimal elements

rep
max

lmin, lmax, rmax

# pairs of arcs (a, b), (c , d)
such that a < b = c � 1 < d � 1

Blue: Eulerian statistics
Red: Stirling statistics

inversion seqs.
Ascent
sequences

Fishburn
matrices

asc, rep
zero, max

rmin

dimension
1st row sum
# wNE-cells
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2. Generating functions and q-series
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Refined generating functions

F (z , v) :=
1X

n=1

zn
X

A2Fn

vdim(A),

=
1X

k=1

v (1� z)k

1� v + v(1� z)k

kY

j=1

(1� (1� z)j),

Let F(z , v) be the generating function of Fishburn matrices with respect
to size (variable z) and dimension (variable v):

=
1X

k=0

vk+1

k+1Y

j=1

1� (1� z)j

v + (1� v)(1� z)j
.

The first one was derived by Jeĺınek (2012) via the Fishburn matrices,
and the second one was found by Fu-J.-Lin-Yan-Zhou (2019) by a new
decomposition of ascent sequences. Subsequently, J.-Schlosser (2022)
used the Sears transformation to establish more equivalent forms.
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Fishburn matrices and two variations

row-Fishburn
matrices

Fishburn
matrices

self-dual
Fishburn

1X

m=1

mY

i=1

(1� (1� z)i )

1X

m=1

mY

i=1

((1� z)�i � 1)

1X

m=0

(1� z)�m�1

mY

i=1

((1� z2)�i � 1)
matrices

non-negative;
upper-triangular; each row
has one positive entry.

Generating functions Definitions

+ each column
has one positive entry.

+ persymmetric

Ref. Jeĺınek, Counting general and self-dual interval orders, 2012.
Zagier, Vassiliev invariants and a strange identity related to
the Dedekind eta-function, 2001.
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3. Transformations of basic hypergeometric series
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Transformations of basic hypergeometric series
For indeterminates a and q (the latter is referred to as the base),
and non-negative integer k , the basic shifted factorial (or q-shifted
factorial) is defined as

(a; q)k :=
kY

j=1

(1� aqj�1), also for k = 1.

For brevity, we write

(a1, . . . , am; q)k := (a1; q)k · · · (am; q)k .
The Rogers-Fine identity:

1X

n=0

(aq; q)n
(bq; q)n

tn =
1X

n=0

(aq; q)n(
atq

b
; q)nbntnqn

2

(1� atq2n+1)

(bq; q)n(t; q)n+1

holds when |q| < 1, |t| < 1 and b 6= qk for k < 0.
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A generalized Rogers–Fine identity

A generalized Rogers–Fine identity due to Andrews–Jeĺınek (2013):

1X

n=0

(�(r(1� x))�1; 1� x)n((1� y)�1; (1� x)�1)n
(�; 1� x)n

rn

For any r and �, they proved the following identity of formal power
series in x and y :

=
1X

n=0

(1� y)(1� x)n
(1� y ; 1� x)n(r(1� x); 1� x)n

(�; 1� x)n
,

where (a; q)n := (1� a)(1� aq) · · · (1� aqn�1).

This is a generalized Rogers–Fine identity. Andrews–Jeĺınek also
asked for a combinatorial interpretation of this identity. We provide
one in terms of Fishburn matrices for a special case of this identity.
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Substituting r = 1, � = (v � 1)v�1(1� z)�1, x = y = 1� (1� z)�1

shows that
1X

k=0

(1� z)k

1� v + v(1� z)k

kY

j=1

(1� (1� z)j)

=
1X

k=0

1

(1� z)k+1

kY

j=1

((1� z)�j � 1)2

1� (v � 1)v�1(1� z)�j
.

Recall that Jeĺınek (2012) found the generating function of Fishburn
matrices with respect to dimension and size

F (z , v) :=
1X

n=1

zn
X

A2Fn

vdim(A)

=
1X

k=1

v (1� z)k

1� v + v(1� z)k

kY

j=1

(1� (1� z)j).

A generalized Rogers–Fine identity
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This leads to an equivalent form of F (z , v):

F (z , v) = �v +
1X

k=0

v

(1� z)k+1

kY

j=1

v((1� z)�j � 1)2

1� (v � 1)((1� z)�j � 1)
,

A generalized Rogers–Fine identity

=
1X

k=1

v (1� z)k

1� v + v(1� z)k

kY

j=1

(1� (1� z)j),

=
1X

k=0

vk+1

k+1Y

j=1

1� (1� z)j

v + (1� v)(1� z)j
.

The first form of F (z , v) is more suitable (than the other two below)
for the saddle-point approach. While the Taylor expansion of inner
product still contains, in general, negative coe�cients, it plays
asymptotically only a perturbative role when v is close to 1.



4. Asymptotics and statistics on Fishburn structures
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fn = [zn]
1X

m=1

mY

i=1

(1� (1� z)i ).

Let fn be the n-th Fishburn number, that is,

fn = n!

✓
6

⇡2

◆n p
n

 
12
p
3

⇡5/2
e⇡

2/12 + O(n�1)

!
.

Ref. Zagier, Vassiliev invariants and a strange identity related to the
Dedekind eta-function. Topology, 2001.

Asymptotics of Fishburn numbers

18

Theorem (Zagier, 2001)

Remark: Zagier first guessed the formula numerically, then he proved
an identity via the modular-form approach, by which the estimation of
fn follows immediately. For more details, we refer to the paper:



How to guess the formula numerically (see Jeĺınek’s talk in PP 2017):

1. Compute fn for large n = N (as large as possible).
2. Make the Ansatz fn ⇡ cn n! n↵ for some constant c .

3. Define rn = fn+1/(nfn), then limn!1 rn = c . Wanted c .
4. For a sequence (an)n2N , let �(an) = an+1 � an.

5. Observe for fixed integer d 6= 0, �(nd) = dnd�1 + O(nd�2).
6. Suppose rn = c + ↵1n�1 + ↵2n�2 + · · · for constants ↵i .
7. Then nrn = cn + ↵1 + ↵2n�1 and �(nrn) = c + O(n�2).

8. For fixed positive integer k , �(k)(nk rnk!�1) = c + O(n�k�1).
9. Set k = 1000 and define tn = �(k)(nk rnk!�1). Then
|t1000 � 6/⇡2| < 10�180, suggesting that tn ! 6/⇡2 and
also rn ! 6/⇡2.

Asymptotics of Fishburn numbers
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Let gn be the number of row-Fishburn matrices such that the sum of
all entries is n. By using the numerical techniques from Zagier,
Jeĺınek (2012) conjectured that

gn = n!

✓
12

⇡2

◆n
 
6
p
2

⇡2
e⇡

2/24 + O(n�1)

!
.

1X

n�1

gnz
n =

1X

n=0

nY

i=0

✓
1

(1� z)i+1
� 1

◆
.

(gn)
8

n=1
= (1, 3, 12, 61, 380, 2815, 24213, 237348 . . .)

Asymptotics of row-Fishburn numbers
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This conjecture was a�rmed by Bringmann, Li and Rhoades (2014).

Ref. Bringmann, Y. Li and R.C. Rhoades, Asymptotics for the
number of row-Fishburn matrices, Eur. J. Comb., 2014.



Fishburn matrices and two variations

row-Fishburn
matrices

Fishburn
matrices

self-dual
Fishburn

1X

m=1

mY

i=1

(1� (1� z)i )

1X

m=1

mY

i=1

((1� z)�i � 1)

1X

m=0

(1� z)�m�1

mY

i=1

((1� z2)�i � 1)
matrices

non-negative;
upper-triangular; each row
has one positive entry.

Generating functions Definitions

+ each column
has one positive entry.

+ persymmetric

Ref. Jeĺınek, Counting general and self-dual interval orders, 2012.
Zagier, Vassiliev invariants and a strange identity related to
the Dedekind eta-function, 2001.
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Let rn be the number of self-dual Fishburn matrices such that the sum
of all entries is n. By using the numerical techniques from Zagier,
Jeĺınek conjectured that

rn = (� + O(n�1/2))
p
n

✓
6n

⇡2e

◆n/2

2
p
6n/⇡,

where � ⇡ 1.361951039.

Jeĺınek presented the generating function of rn:
1X

n�1

rnt
n =

1X

n=0

1

(1� x)n+1

nY

i=1

✓
1

(1� x2)i
� 1

◆
.

� = 3

⇡
3

2

e
⇡2

24
� 1

4 2
3 log 2

2⇡2
+1 ⇡ 1.361951039.

Asymptotics of self-dual Fishburn numbers
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Hwang–J. (2020) solved this remaining conjecture and deduced that

Remark: It is quite di�cult to guess an expression of �.



A two-stage saddle-point analysis
Hsien-Kuei Hwang and J. (2020) developed a two-stage
saddle-point approach to directly attack the corresponding
asymptotic approximations, neglecting the exactness nature of the
modular form which is a strong and rare property.

• reprove Zagier’s theorem (2001) on the asymptotics of the
Fishburn numbers;

• reprove Bringmann-Li-Rhoades’s theorem (2014) on the
asymptotic number of row-Fishburn matrices;

• confirm a conjecture of Jeĺınek (2012) on the asymptotic
number of self-dual Fishburn matrices;

• solve one open problem proposed by Jeĺınek (2012) and
Bringmann–Li–Rhoades (2014) on the limiting distribution
of Stirling statistics (N (log n, log n));

• establish the limiting distributions of several statistics with a
similar sum-of-finite-product form for their g.f.s.
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Statistics on members of the Fishburn family

(2+2)-free posets

magnitude
Regular linearized chord diagrams

length of the initial run of openers

(2|3̄1)-avoiding perms.
des, iasc

(2–1)-avoiding

# minimal elements

rep
max

lmin, lmax, rmax

# pairs of arcs (a, b), (c , d)
such that a < b = c � 1 < d � 1

Blue: Eulerian statistics
Red: Stirling statistics

inversion seqs.
Ascent
sequences

Fishburn
matrices

asc, rep
zero, max

rmin

dimension
1st row sum
# wNE-cells
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On the limiting shape of random Fishburn matrices

the dimension Xn ⇠ N
⇣

6n

⇡2
,
3(12 � ⇡2

)n

⇡4

⌘
;

• (an extended open problem of Jeĺınek 2012) Assume that �(z)
is a polynomial with �(1) > 1 and that all �-Fishburn matrices
of dimension n are equally likely to be selected. Then

the size Yn ⇠ N
⇣

�0
(1)

2�(1)
n
2,

n
2

2

⇣
�0

(1) + �00
(1)

�(1)
�
⇣

�0
(1)

�(1)

⌘
2
⌘⌘

;

• a conjecture of Stoimenow (1998).

Recently Hwang–J.–Schlosser (2022) find that this two-stage
saddle-point approach combined with transformation formulas of
basic hypergeometric series is applicable to a wider class of
problems:

• (an open problem of Bringmann–Li–Rhoades 2014) Assume
that all Fishburn matrices of size n are equally likely to be
selected. Then
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First row sum N (log n, log n)

Diagonal sum N (2 log n, 2 log n)

# smallest
nonzero n � 2Poisson

✓
⇡2

6

◆

entries

Remark: we see that in a typical random Fishburn matrix, entries
equal to 1 are ubiquitous, those to 2 appear like a Poisson
distribution, and the rest is asymptotically negligible.

Stirling

Dimension N
✓
6n

⇡2
,
3(12� ⇡2)n

⇡4

◆
Eulerian

On the limiting shape of random Fishburn matrices

Theorem (Hwang–J. 2020, Hwang–J.–Schlosser 2022) Assume that
all Fishburn matrices of size n are equally likely to be selected. For
a random Fishburn matrix of size n, we have
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A conjecture of Stoimenow (1998)

gnf
�1

n
= e�1(1 + O(n�1)).

Regular linearized chord diagrams (rLCD) is a matching of the set
[2n] such that it has no nested pair of arcs whose openers or the
closers are next to each other.

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

An rLCD is connected if any arc intersects some other arcs.

Theorem (Hwang–J.–Schlosser 2022, a conjecture of Stoimenow
1998) Let fn be the number of rLCDs of size n (which equals the
nth Fishburn number), and gn be the number of connected ones of
size n. Then,
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Some progress towards Stoimenow’s conjecture

g(z) =
1X

n=1

gnz
n = z + z2 + 2z3 + 5z4 + 16z5 + 63z6 + 293z7 + · · ·

of connected rLCDs of size n satisfies �(z , g(z)) = 1 where

�(z , v) =
1

1 + v

1X

n=0

nY

i=1

1� (1� z)i

1 + v(1� z)i
.

“�(z , 1) is a quantum modular form related to the half-derivative
of a weight 1/2 modular form, similar to the situation arising for
the Kontsevich’s strange function

F (q) =
1X

n=0

nY

i=1

(1� qi ).

What role, if any, do modular forms play in the estimation of gn? ”

Theorem (Zagier 2001) The generating function

Remark by Bringmann–Li–Rhoades (2014):
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Saddle point method

We will derive the well-known Stirling formula

n! ⇠
p
2⇡n

⇣n
e

⌘n

via the saddle point method. This simplest case will show you how to
apply the saddle point method. Our goal is to estimate the coe�cients
of exponential generating function (n!)�1 = [zn]exp(z), we start with

[zn]ez =
1p
2⇡i

Z

|z|=r

ez

zn+1
dz

where r is chosen to be the solution of (ezz�n�1)0 = 0 and r = n + 1
is called saddle point. The saddle point corresponds locally to a
maximum of the integrand along the path. It is natural to expect that
a small neighbourhood of the saddle point may provide the dominant
contribution to the integral.



Saddle-point method

The modulus of the integrand |ez/zn+1| for n = 4.
30



Proof sketch: Switch to polar coordinates and set z = ne i✓. Then,

[zn]ez =
1p
2⇡i

Z

|z|=n

ez

zn+1
dz

=
en

nn
· 1

2⇡

Z
+⇡

�⇡
en(e

i✓�1�i✓)d✓.

Saddle point method

We choose ✓0 = n�2/5 such that n✓2
0
! 1 and n✓3

0
! 0. Then

Z
+✓0

�✓0

en(e
i✓�1�i✓)d✓ =

Z
+n

�2/5

�n�2/5

e�n✓2/2d✓(1 + O(n�1/5))

⇠ 1p
n

Z
+1

�1
e�t

2/2dt =

r
2⇡

n�����

Z
2⇡�✓0

✓0

en(e
i✓�1�i✓)d✓

����� = O(exp(�Cn1/5))

! major part

! minor part
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5. Concluding remarks



Concluding remarks

1. Two interesting generating functions on the Euler numbers:
1X

k=0

kY

j=1

tanh(2jz) =
1X

n=0

E2n+1

n!
zn

These two equations are special cases of general theorems proved
by Andrews–Jiménez-Urroz–Ono 2001 and Lovejoy–Ono (2003),
respectively.

1X

k=0

sech((2k + 1)z)
kY

j=1

tanh((2j � 1)z) =
1X

n=0

E2n

n!
zn

They have a sum-of-finite-product form. Is there a combinatorial
interpretation of these two equations? An inclusion-exclusion
process is expected.
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�(z , v) =
1

1 + v

1X

n=0

nY

i=1

1� (1� z)i

1 + v(1� z)i
.

Remark by Bringmann–Li–Rhoades (2014):
“�(z , 1) is a quantum modular form related to the half-derivative
of a weight 1/2 modular form, similar to the situation arising for
the Kontsevich’s strange function

F (q) =
1X

n=0

nY

i=1

(1� qi ).

What role, if any, do modular forms play in the estimation of gn? ”

2. Recall that �(z , g(z)) = 1 where

Concluding remarks

34



Thank you for your attention!
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