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1. Combinatorial background of the Fishburn family



Fishburn matrices

Fishburn matrices are non-negative, upper-triangular square matrices
with at least one positive entry in each row and column.

E.g. there are 15 Fishburn matrices of size (the sum of entries) 4
1 2 2 1 1
(o 1)(8 1) (o 2)(52)(3 1)
1 1 0 1 0 0 0
(;g),(“o),(“ )( L
0 0 1 0 0 0 1
2 0 0 1 0 O 1 0 O 1 1 0
<0 : o),(o : 0>,<0 : o),(o : 1><
0 0 1 0 0 1 0 0 2 0 0 1

The number of Fishburn matrices of a given size are known as
Fishburn numbers (A022493 of the OEIS). Their first few values are
(1,2,5,15,53,217,1014,5335, 31240, 201608, . . .)
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Fishburn numbers

Fishburn numbers are the coefficients of the formal power series

Y -1 -2))=1+z+222+52>+ 152 +532° + - -,
m=0 /=1

which count the Fishburn matrices of a fixed dimension. This

generating function was derived by Zagier (2001). Subsequently
Andrews and Jelinek (2013) found an equivalent form:

Sio- -3 L2 ()

m=0 j=1
by applying the Rogers—Fme identity:

3 (aq; q)n _, Z (aq; q)n(22; q)nb"t"q™ (1 — atq®™*?)
— (bq; q)n(t; )t
holds when |g| < 1, |t| < 1 and b # g* for k < 0.




Fishburn numbers

The study of Fishburn numbers and their generalizations has
remarkably led to many interesting results, including for instance

e Congruences (Garvan 2015, Andrews—Sellers 2016,
Bijaoui-Boden—Myers—Osburn—Rushworth—Tronsgard—Zhou 2020),

e Asymptotic formulas (Zagier 2001, Jelinek 2012,
Bringmann—Li—Rhoades 2014, Hwang—J. 2019),

e g-series (Andrews—Jelinek 2013, J.—Schlosser 2020),

e A variety of bijections (Bousquet-Mélou—Claesson—Dukes—Kitaev
2010, Claesson—Linusson 2011, Dukes—Parviainen 2010, Levande
2013, Fu—J.—Lin=Yan—Zhou 2019, Dukes—McNamara 2019,
Auli—Elizalde 2020),

e Generating functions (Bousquet-Mélou—Claesson—Dukes—Kitaev
2010, Dukes—Kitaev—Remmel-Steingrimsson 2011, Jelinek 2012,
Zagier 2001).



Statistics on members of the Fishburn family

Ascent (2—1)-avoiding
Sequences inversion seqs.
asc, rep re
Zero, max \ / ma[;
rmin Fishburn
matrices (2|31)-avoiding perms.
dimension des, iasc

1st row sum

(2+42)-free posets _~ # WNE-cells
magnitude \\

# minimal elements Regular linearized chord diagrams
length of the initial run of openers

Blue: Eulerian statistics # pairs of arcs (a, b), (c, d)
Red: Stirling statistics suchthata<b=c—-1<d—-1

Imin, Imax, rmax



2. Generating functions and g-series



Refined generating functions

Let F(z,v) be the generating function of Fishburn matrices with respect
to size (variable z) and dimension (variable v):

F(z,v):= iz” Z yaim(A)

n=1 AeF,
- v (1 — z)k
— (1—(1—
z_:l—v+v(1—z)kH 2))
k+1

S e
v+ (1 —v)(1-2z)y
The first one was derived by Jelinek (2012) via the Fishburn matrices,
and the second one was found by Fu-J.-Lin-Yan-Zhou (2019) by a new

decomposition of ascent sequences. Subsequently, J.-Schlosser (2022)
used the Sears transformation to establish more equivalent forms.



Fishburn matrices and two variations

Generating functions Definitions

oo m .
row-Fishburn iy non-negative;
matrices Z H((l —z)' - 1) upper-triangular; each row

=1 /= -
m=L =l has one positive entry.
Fishb T + each col
Isnburn i eachn column
: 1—(1—2z .
matrices 2:1 1_[1( ( )) has one positive entry.
m= | =

self-dual m _
Fishburn Z(l —z) M H((l — 2%)7" — 1) + persymmetric
matrices m=0 i=1
Ref. Jelinek, Counting general and self-dual interval orders, 2012.
Zagier, Vassiliev invariants and a strange identity related to
the Dedekind eta-function, 2001.



3. Transformations of basic hypergeometric series



Transformations of basic hypergeometric series

For indeterminates a and g (the latter is referred to as the base),

and non-negative integer k, the basic shifted factorial (or g-shifted

factorial) is defined as
k

(a;9)k = H(l — aqi_l), also for k = >

j=1
For brevity, we write

(a1, am @)k = (a1: @)k - (am: @)k
The Rogers-Fine identity:

Z aq q Z (aq q) (atq ) bntn n° (1_atq2n—|—1)
 (

ba:q)n (bq; q)n(t; q)nta
holds when |g| < 1, |t| < 1 and b # g* for k < 0.



A generalized Rogers—Fine identity

A generalized Rogers—Fine identity due to Andrews—Jelinek (2013):

For any r and 7, they proved the following identity of formal power
series in x and y:

o

(v(r(1=x)) 11 =x)a((L—y)H (A =x) ") ,

,,Z:O (vi1 =) r

B = (1—=y; 1 —x)u(r(1 —x);1 —x),
_;O(l_y)(l_x) (7;]—_X)n 9

where (a;q), := (1 —a)(1 —aq)---(1 —ag"™1).

This is a generalized Rogers—Fine identity. Andrews—Jelinek also
asked for a combinatorial interpretation of this identity. We provide
one in terms of Fishburn matrices for a special case of this identity.



A generalized Rogers—Fine identity

Substituting r =1, v = (v — 1)v_1(1 — Z)_l, x=y=1-(1- Z)_l

shows that
O

1—2z)
Zl—\/(+v(1—z)kH(1_ (1-2))

k=0
) (127 1)
Z(1—2)"+11—[1—(v—1 v (1 —2z)~

Recall that Jelinek (2012) found the generating function of Fishburn
matrices with respect to dimension and size

F(Z, V) - izn Z Vdim(A)

n=1 AEeF,

> (1 — z)k J
:kzl—v—l—v(l—z)kH(l_ (1=2))




A generalized Rogers—Fine identity

This leads to an equivalent form of F(z,v):
v((1 —2)7 —1)?
F _
(z,v) = V+Z(1—zk+1H1—(v—1)((1—z)_J—1)

v (1 — z)X
:Zl—v(—l—v 1—z)kH(1_(1_Z
k+1

k+1 1-(1-2z)
_Z 1_Iv—l—(l—v(l—z)

The first form of F(z,v) is more suitable (than the other two below)
for the saddle-point approach. While the Taylor expansion of inner
product still contains, in general, negative coefficients, it plays
asymptotically only a perturbative role when v is close to 1.



4. Asymptotics and statistics on Fishburn structures



Asymptotics of Fishburn numbers

Let f, be the n-th Fishburn number, that is,

f=[2") 1]1-@1-2))

m=1 ;=1

Theorem (Zagier, 2001)
6\" 12v/3 _
fn:n! (F) \/ﬁ<775/2 e /12—|—O(n 1))

Remark: Zagier first guessed the formula numerically, then he proved
an identity via the modular-form approach, by which the estimation of
f, follows immediately. For more details, we refer to the paper:

Ref. Zagier, Vassiliev invariants and a strange identity related to the
Dedekind eta-function. Topology, 2001.



Asymptotics of Fishburn numbers

How to guess the formula numerically (see Jelinek's talk in PP 2017):

© NO O A whHE

9.

Compute f, for large n = N (as large as possible).

Make the Ansatz f, =~ c" n! n® for some constant c.

Define r, = f,.1/(nf,), then lim,_, o r, = c. Wanted c.

For a sequence (a,)nen, let A(an) = api1 — an.

Observe for fixed integer d # 0, A(n) = dn“~! + O(n?~2).
Suppose r, = ¢ + a;1n~ ! + a;n—2 + - - - for constants «;.
Then nr, = cn+ a; +axn™! and A(nr,) = ¢+ O(n™2).

For fixed positive integer k, A (n*r,k1=1) = ¢ + O(n=F1).
Set k = 1000 and define t, = AWK (nkr,kI=1). Then

[t1000 — 6/72] < 107180 suggesting that t, — 6/ and
also r, — 6/72.



Asymptotics of row-Fishburn numbers

Let g, be the number of row-Fishburn matrices such that the sum of
all entries is n. By using the numerical techniques from Zagier,

Jelinek (2012) conjectured that

g, = n! <W2> (67{ W/24+0(n1)>.

This conjecture was affirmed by Bringmann, Li and Rhoades (2014).

> e =31 (1)

n>1 n=0 ;i=0
(gn)8_, = (1,3,12,61,380,2815,24213,237348 .. .)

Ref. Bringmann, Y. Li and R.C. Rhoades, Asymptotics for the
number of row-Fishburn matrices, Eur. J. Comb., 2014.




Fishburn matrices and two variations

Generating functions Definitions

©.@) m .
row-Fishburn i non-negative;
matrices Z H((l —2) 1) upper-triangular; each row

:]_ | — . .
m=11=1 has one positive entry.
] oo m
Fishburn Z H(l —(1-2)) + each column
matrices i has one positive entry.

self-dual m ,
Fishburn Z(l —z) M H((l — z%)7" — 1) + persymmetric
matrices m=0 i=1

Ref. Jelinek, Counting general and self-dual interval orders, 2012.

Zagier, Vassiliev invariants and a strange identity related to
the Dedekind eta-function, 2001.



Asymptotics of self-dual Fishburn numbers

Let r, be the number of self-dual Fishburn matrices such that the sum
of all entries is n. By using the numerical techniques from Zagier,

Jelinek conjectured that
~ (0 )i (S
where v ~ 1.3619510309.

Jelinek presented the generating function of r,:

> =3 e I (= 1)

n>1
Hwang—J. (2020) solved this remamlng conjecture and deduced that

2 3 log 2

~4272.2 "1 2 1.361951039.

n/2
6n 2\/6n/7r
m2e ’

/y:

Remark: It is quite difficult to guess an expression of ~.
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A two-stage saddle-point analysis

Hsien-Kuei Hwang and J. (2020) developed a two-stage
saddle-point approach to directly attack the corresponding
asymptotic approximations, neglecting the exactness nature of the
modular form which is a strong and rare property.

e reprove Zagier's theorem (2001) on the asymptotics of the
Fishburn numbers;

e reprove Bringmann-Li-Rhoades's theorem (2014) on the
asymptotic number of row-Fishburn matrices;

e confirm a conjecture of Jelinek (2012) on the asymptotic
number of self-dual Fishburn matrices;

e solve one open problem proposed by Jelinek (2012) and
Bringmann—Li—Rhoades (2014) on the limiting distribution
of Stirling statistics (N (log n, log n));

e establish the limiting distributions of several statistics with a
similar sum-of-finite-product form for their g.f.s.



Statistics on members of the Fishburn family
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Blue: Eulerian statistics
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On the limiting shape of random Fishburn matrices

Recently Hwang—J.—Schlosser (2022) find that this two-stage
saddle-point approach combined with transformation formulas of
basic hypergeometric series is applicable to a wider class of
problems:

e (an open problem of Bringmann—-Li—Rhoades 2014) Assume
that all Fishburn matrices of size n are equally likely to be
selected. Then

the dimension X, ~ N (

)
w2 w4

6n 3(12 — 772)n) |

e (an extended open problem of Jelinek 2012) Assume that \(z)
is a polynomial with A\(1) > 1 and that all A-Fishburn matrices
of dimension n are equally likely to be selected. Then

_ N (1) 5, n® (N (1)+ N1 MO\
the size Y””N(»a)” ’?( "D (,\(1)) ))

e a conjecture of Stoimenow (1998).



On the limiting shape of random Fishburn matrices

Theorem (Hwang—J. 2020, Hwang—J.—Schlosser 2022) Assume that
all Fishburn matrices of size n are equally likely to be selected. For
a random Fishburn matrix of size n, we have

First row sum N (log n, log n) Stirling
Diagonal sum N (2log n,2log n)
# smallest 2

NoNnzero n — 2 Poisson <€>

entries

2
Dimension N<6Z, 312 47T )n> Eulerian
7r T

Remark: we see that in a typical random Fishburn matrix, entries
equal to 1 are ubiquitous, those to 2 appear like a Poisson
distribution, and the rest is asymptotically negligible.



A conjecture of Stoimenow (1998)

Theorem (Hwang—J.—Schlosser 2022, a conjecture of Stoimenow
1998) Let f, be the number of rLCDs of size n (which equals the
nth Fishburn number), and g, be the number of connected ones of
size n. Then,

gnfy, T =€ 1(1+0(n7")).

Regular linearized chord diagrams (rLCD) is a matching of the set
[2n] such that it has no nested pair of arcs whose openers or the
closers are next to each other.

/?C?i\ m
A/?i\ /K\/\. /\./\./\.

An rLCD is connected if any arc intersects some other arcs.



Some progress towards Stoimenow’s conjecture

Theorem (Zagier 2001) The generating function

— Zgnz” — 2422 4+223 4+ 52 +162° +632° +2932" + - -
n=1
of connected rLCDs of size n satisfies ®(z, g(z)) = 1 where

T 1—-(1-2z)
¥z, v) = 1—|—VZH1—|—V1—Z)

n=0 ;=1

Remark by Bringmann—Li—Rhoades (2014):

“®(z,1) is a quantum modular form related to the half-derivative
of a weight 1/2 modular form, similar to the situation arising for
the Kontsevich's strange function

Fla)=)_ ][ -d)
n=0 ;=1
What role, if any, do modular forms play in the estimation of g,? "



Saddle point method

We will derive the well-known Stirling formula

nl ~ \2mwn (ﬁ)
e

via the saddle point method. This simplest case will show you how to
apply the saddle point method. Our goal is to estimate the coefficients
of exponential generating function (n') = [z lexp(z), we start with

[z"]e* =

where r is chosen to be the solution of (e z7" )Y =0and r=n+1
Is called saddle point. The saddle point corresponds locally to a
maximum of the integrand along the path. It is natural to expect that
a small neighbourhood of the saddle point may provide the dominant
contribution to the integral.



Saddle-point method

The modulus of the integrand |e?/z" ™| for n = 4.



Saddle point method
Proof sketch: Switch to polar coordinates and set z = ne'?. Then,

1 4
[2"e? = " dz

V27 Jizj=n 2"

n +7r .
_ € 1 / en(e’e—l—i6’)d9.

n" 2T

—TT

We choose g = n=2/5 such that nf3 — oo and nf3 — 0. Then

+0o i0 : +n~?/° 2
/ g€ —1=i0)qg = / e~ /2d9(1 + O(n_1/5))

—6, —n—2/5
1 T 27

27‘(‘—6’0 .
/ e ~1-i0)gg| — O(exp(—Cn'/®))  — minor part
0o




5. Concluding remarks



Concluding remarks
1. Two interesting generating functions on the Euler numbers:

ZHtanh(sz) ZEzn.H 5

kOj].

E2n
n!

n

) sech((2k +1)z) Htanh((2j —1)z) =
k=0 j=1

n=0

These two equations are special cases of general theorems proved
by Andrews—Jiménez-Urroz—Ono 2001 and Lovejoy—Ono (2003),
respectively.

They have a sum-of-finite-product form. Is there a combinatorial
interpretation of these two equations? An inclusion-exclusion
process is expected.



Concluding remarks

2. Recall that ®(z, g(z)) = 1 where
1 1—(1-72)
¢ = -
(z.v) 1—|—VZ_1_[11—|—V(1—Z)’
Remark by Bringmann—Li—Rhoades (2014):
“®(z,1) is a quantum modular form related to the half-derivative

of a weight 1/2 modular form, similar to the situation arising for
the Kontsevich's strange function

Fla)=_[]-d).
n=0 ;=1
What role, if any, do modular forms play in the estimation of g,? "




Thank you for your attention!



