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What is the modified Macdonald polynomial?
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Symmetric functions
Let ⇤n denote the algebra of symmetric functions of homogeneous
degree n in variables X = {x1, x2, . . .}, then dim(⇤n) equals
the number of partitions of n.

A partition � = (�1,�2, . . . ,�k) of n is a weakly decreasing sequence
of positive integers (i.e., �1 � �2 � · · · � �k > 0) such that the sum
of �i ’s equals n.

� = (6, 6, 5, 3, 1)

The bases for ⇤n: monomial symmetric functions m�(X ), elementary
symmetric functions e�(X ), complete homogeneous symmetric
functions h�(X ), power–sum symmetric functions p�(X ) and Schur
functions s�(X ).



Macdonald polynomials P�(X ; q, t) indexed by partitions are
polynomials in infinitely many variables X = {x1, x2, . . .} with
coe�cients in the field Q(q, t) of rational functions of two variables
q and t. They are defined as the unique basis for the ring of
symmetric functions over the field Q(q, t) with orthogonal property
and lower triangular property, namely,

Macdonald polynomials
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P�(X ; q, t) = m�(X ) +
X

µ<�

c�µ(q, t)mµ(X )

hp�, pµi = z���µ

`(�)Y

i=1

1� q�i

1� t�i

where z� = 1k1k1!2k2k2! · · · and i appears ki times in �.

for c�µ(q, t) 2 Q(q, t). Here m�(X ) is the monomial symmetric
function. Furthermore, hP�,Pµi = ��µ with respect to the inner
product



Macdonald polynomials
Example: For n = 2, there are two partitions (1, 1) and (2) of 2,
satisfying (1, 1) < (2) by the dominance order. Since

P�(X ; q, t) = m�(X ) +
X

µ<�

c�µ(q, t)mµ(X ),

we have P11(X ; q, t) = m11(X ). Let c2,11(q, t) = c , then

P2(X ; q, t) = m2(X ) + cm11(X ),

=
c

2
p11(X ) + (1� c

2
)p2(X ),

where c is determined by the condition that hP2,P11i = 0. That is,

hP11,P2i =
⌧
1

2
p11 �

1

2
p2,

c

2
p11 + (1� c

2
)p2

�
= 0,

which gives that

P2(X ; q, t) = m2(X ) +
(1 + q)(1� t)

1� qt
m11(X ).
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Macdonald polynomials
P�(X ; q, t)

Hall–Littlewood

P�(X ; 0, t)

monomial

P�(X ; 0, 1) = m�(X )

polynomials

polynomials
Jack’s symmetric

functions

Schur functions
P�(X ; 0, 0) = s�(X )symmetric functions

P(↵)
� (X ; q, t)

zonal
polynomials

5

integral Macdonald

↵ = 2↵ = 1

polynomials
modified Macdonald

plethysm
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Integral Macdonald polynomials
Since the coe�cients in this expansion have nontrivial denominators,
Macdonald proposed the integral form of P�(X ; q, t), denoted by
J�(X ; q, t), named as the integral Macdonald polynomials.

J�(X ; q, t) =
Y

s2D(�)

(1� qarm(s)t1+leg(s))P�(X ; q, t)

s

� = (7, 6, 5, 5, 2),
leg(s) = 3,
arm(s) = 4.

where arm(s) and leg(s) are the number of boxes strictly east of s,
and north of s respectively.

Macdonald conjectured that the coe�cients of J�(X ; q, t) are
polynomials in q and t. This is called integrality conjecture.



Integral Macdonald polynomials
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The integrality conjecture was a�rmed by Garsia and Remmel
(1998), Garsia and Testler (1996), Kirillov and Noumi (1998), Knop
(1997), Sahi (1996). For instance,

P22(X ; q, t) = m22(X ) +
(1 + q)(1� t)

1� qt
m211(X )

+
(2 + t + 3q + q2 + 3qt + 2q2t)(1� t)2

(1� qt)(1� qt2)
m1111(X ).

J22(X ; q, t) = (1� qt)(1� t)(1� qt2)(1� t2)P22(X ; q, t),

= (1� qt)(1� t)(1� qt2)(1� t2)m22(X )

+(1� t)2(1� qt2)(1� t2)(1 + q)m211(X )

+(2 + t + 3q + q2 + 3qt + 2q2t)

⇥(1� t)3(1� t2)m1111(X ).
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Modified Macdonald polynomials

Macdonald positive conjecture was confirmed by Haiman (2001)
through working with modified Macdonald polynomials (introduced
by Garsia and Haiman in 1993), defined as

Macdonald positive conjecture says that the coe�cient K�µ(q, t)
defined by the Schur expansion of integral Macdonald polynomials

Jµ(X ; q, t) =
X

µ

K�µ(q, t)s�[X (1� t)]

is a polynomial with non-negative coe�cients where f [X ] denotes
the plethystic substitution of X into the symmetric function f .

H̃µ(X ; q, t) = tn(µ)Jµ


X

1� t�1
; q, t�1

�
=

X

µ

K̃�µ(q, t)s�(X ).

Here K̃�µ(q, t) = tn(µ)K�µ(q, t�1). Since K�µ(q, t) has degree at
most n(µ) in t, the coe�cient K̃�µ(q, t) 2 N[q, t] if and only if
K�µ(q, t) 2 N[q, t].



Modified Macdonald polynomials
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Example: For µ = (2, 2),

= t2s4[X (1� t)] + (qt2 + t + qt)s31[X (1� t)]

J22(X ; q, t) = (1� qt)(1� t)(1� qt2)(1� t2)m22(X )

+(1� t)2(1� qt2)(1� t2)(1 + q)m211(X )

+(2 + t + 3q + q2 + 3qt + 2q2t)

⇥(1� t)3(1� t2)m1111(X ).

+(1 + q2t2)s22[X (1� t)] + q2s1111[X (1� t)]

+(q + q2t + qt)s211[X (1� t)].

H̃22(X ; q, t) = s4(X ) + (q + t + qt)s31(X ) + (q2 + t2)s22(X )

+(qt2 + q2t + qt)s211(X ) + q2t2s1111(X ).
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Combinatorial formulas
of modified Macdonald polynomials
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H̃�(X ; q, t) =
X

�:D(�)!P

x�tmaj(�)qinv(�),

Modified Macdonald polynomials

Theorem (Haglund, Haiman, Loehr, 2005):

Des(�) = {z 2 D(�) : �(z) > �(South(z))},

maj(�) =
X

z2Des(�)

(leg(z) + 1),

z u �(z) = u

�(South(z)) = vv
>

to be the descent set and the major index of �, respectively.

where x� =
Q

z2D(�) x�(z) = x#10s
1 x#20s

2 · · · x#i 0s
i · · · and the statistics

maj (the major index), inv (inversion) are natural extensions of
classical permutation statistics. Define

South(z)
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H̃�(X ; q, t) =
X

�:D(�)!P

x�tmaj(�)qinv(�).

Modified Macdonald polynomials

Theorem (Haglund, Haiman, Loehr, 2005):

For � 2 F (�), add a box with entry 1 below the bottommost box of
each column of �. Let inv(�) count the number of inversion triples
where an inversion triple is a triple (a, b, c) of entries such that

· · ·a
b

c and a < b < c ,
b < c < a,
c < a < b or a = b 6= c .

5 4

9 3 6 1 3

2 5 9 4 8

3 9 7 3 5
5 8 4 6 4 8 7

9 3 6 5 2 10 1

� =

1 1 1 1 1 1 1

5 4

9
is an inversion triple.

2

9 1 is not an inversion triple.



Modified Macdonald polynomials
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H̃�(X ; q, t) =
X

�

perm(�)x�tmaj(�)qinv(�)
Theorem (Corteel, Haglund, Mandelshtam, Mason and Williams, 2021):

summed over sorted tableaux, where perm(�) is a q-multinomial.
Interestingly, a new statistic quinv was introduced, inspired by
multiline queue formula to compute the stationary probabilities of
the ASEP due to Martin (2020).

Definition: Given a filling �, add a box with entry 0 above the
topmost box of each column of �. Let quinv(�) count queue
inversion triples where a queue inversion triple is a triple (a, b, c) of
entries such that

· · ·
a
b c

and a < b < c ,
b < c < a,
c < a < b or a = b 6= c .
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Theorem (Ayyer, Mandelshtam, Martin, 2023):

H̃�(X ; q, t) =
X

�:D(�)!P

x�tmaj(�)qquinv(�).

Modified Macdonald polynomials

This was conjectured by Corteel, Haglund, Mandelshtam, Mason and
Williams (2021). Proof strategy: Verify that the RHS satisfies the
conditions that uniquely characterize the modified Macdonald
polynomials:

(1) H̃µ[X (1� q); q, t] 2 Q(q, t){s� : � � µ};
(2) H̃µ[X (1� t); q, t] 2 Q(q, t){s� : � � µ0};
(3) hH̃µ, sni = 1.

Beyond that, Ayyer, Mandelshtam and Martin (2023) proposed a
conjecture on the refined equivalence of these two formulas.



Two fillings �, ⌧ of D(�) are row-equivalent if the multisets of
entries in the ith row of � and ⌧ are exactly the same for all i .

X

⌧2[�]

tmaj(⌧)qinv(⌧) =
X

⌧2[�]

tmaj(⌧)qquinv(⌧).

If � is a filling of a rectangular diagram, then
X

⌧2[�]

tmaj(⌧)qinv(⌧)uquinv(⌧) =
X

⌧2[�]

tmaj(⌧)uinv(⌧)qquinv(⌧).

Theorem (J. and Lin, 2024): Let [�] denote the row-equivalent class
of �, then

Remark: The second equation is not generally true, though it also
holds for column strict fillings �, proved by Bhattacharya, Ratheesh
and Viswanath (2023, 2024). Their proofs are bijective, which
develop novel connections between di↵erent combinatorial models,
maps and statistics.

Modified Macdonald polynomials
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X

⌧2[�]

tmaj(⌧)qinv(⌧)uquinv(⌧) 6=
X

⌧2[�]

tmaj(⌧)uinv(⌧)qquinv(⌧)

Example: Consider the filling � and its row-equivalent class [�]:

3

4 1 2

3 3 3

3

4 2 1

3 3 3

3

1 2 4

3 3 3

3

1 4 2

3 3 3

3

2 4 1

3 3 3

3

2 1 4

3 3 3
[�]

maj 2 2 2 2 2 2

inv 0 1 2 1 2 3

quinv 3 2 2 1 0 1

for the non-rectangular diagram of � = (3, 3, 1).

Modified Macdonald polynomials
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The proofs: two operators on fillings
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Reverse operator

Each Young diagram D(�) is regarded as a concatenation of
maximal rectangles in a way that the heights of rectangles are
strictly decreasing from left to right. Let � = �1 t · · · t �p where p
is the number of rectangles of D(�).

�1 �2 · · · �p

9 3 6 1 3

2 5 9 4 8

3 9 7 3 5
5 8 4 6 4

9 3 6 5 2

3

8

5

4

2

1

4

3
6

5

6

9

7
4

6

3

5

9
8

3

9

2

3
5

9

For a partition � and a filling � = �1 t · · · t �p, define
rev(�) = rev(�1) t · · · t rev(�p) as the reverse of � where the filling
rev(sigma) is obtained by reversing the sequence of entries of each
row.
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Flip operator
For a filling � 2 F (�), an index i such that �0

i = �0
i+1 and an integer

r  �0
i , let t

(r)
i be the operator that acts on � by interchanging the

entries �(r , i) and �(r , i + 1). For 1  s  r  �0
i , let

t [s,r ]i := t(s)i � t(s+1)
i � · · · � t(r)i

denote the flip operator that swaps entries �(x , i) and �(x , i + 1) for
all x with s  x  r . The flip operator ⇢ri is defined as follows:

are both queue inversion triples or both are not. Define ⇢ri = t [h,k]i .

1. if �(x , i) = �(x , i + 1) for all 1  x  r , then ⇢ri (�) = �;
2. otherwise, let k be the largest integer such that k  r and

�(k , i) 6= �(k , i + 1). Let h be the largest integer such that
h  k , �(h, i) 6= �(h, i + 1) and

�(h, i)
�(h � 1, i) �(h� 1, i + 1)

�(h, i + 1)
�(h � 1, i) �(h� 1, i + 1)
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Flip operator

Example: For the filling � as below, ⇢61(�) = t [3,5]1 (�) is generated as
follows. Since row 5 is the topmost row with di↵erent entries, k = 5
and ⇢61 starts from this row. Further, ⇢61 terminates at row 3 (h = 3),
as triples (3, 5, 8) and (9, 5, 8) are both queue inversion triples.

3 3

9 3

2 5

3 9

5 8

9 3

3 3

3 9

2 5

3 9

5 8

9 3

3 3

3 9

5 2

3 9

5 8

9 3

3 3

3 9

5 2

9 3

5 8

9 3

Remark: Loehr and Niese (2012) introduced the column switch
operator to describe the change of inversions (inv). In parallel, Ayyer,
Mandelshtam and Martin (2023) defined the flip operator for quinv.
We unify these two operators to construct the desired bijection.

row 1

row 2

row 3

row 4

row 5

row 6
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The bijective proof outline

(quinv ,maj)('(�)) = (inv ,maj)(�).

In particular, if D(�) is a rectangle, then

(inv , quinv ,maj)('(�)) = (quinv , inv ,maj)(�).

Let � = �1 t · · · t �p, define

(�) :=
pX

i=1

(quinv(�i )� inv(�r
i )).

Theorem: There is a bijection � : F (�) ! F (�) satisfying �(�) ⇠ �,

quinv(�(�)) = inv(�) + (�(�)),
maj(�(�)) = maj(�),

Ndes(�1) = Ndes((�(�)1)
r ),

and the topmost rows of � and �(�) are reverse of each other. Here
Ndes(�) = (x1, . . . , xk) and xi counts non-descents of column i .

Goal: A bijection ' : F (�) ! F (�) satisfying '(�) ⇠ � and



The second bijection ✓ : F (�) ! F (�) acts on each rectangle of the
fillings independently and decreases the number of queue inversions
by (�(�)) but preserves the major index, by which we find the
desired bijection '.

22

Both bijections �, ✓ are constructed by the involution �i :

Theorem: For a partition � and �0
i = �0

i+1, let � 2 F (�) and xi be
the number of non-descents in the ith column of �. Then there is an
involution �i : F (�) ! F (�) such that �i (�) ⇠ �, and for
⌫ 2 {inv , quinv},

maj(�i (�)) = maj(�),

⌫(�i (�)) = ⌫(�) + xi+1 � xi ,

Ndes(�i (�)) = si �Ndes(�),

where si � (. . . xi , xi+1 . . .) = (. . . xi+1, xi . . .).

The bijective proof outline



5 4

9 3 6 1 3

2 5 9 4 8

3 9 7 3 5
5 8 4 6 4 8 7

9 3 6 5 2 10 1

� =

0 3 7

7 6 4 8 5

1 5 6 3 9

9 30 5 0 7

7 4 4 8 5

1 2 6 3 9

9 35

0 7

7 4 8 6

1 2 5 10

5 3 0 7 9

7 4 8 6 8

1 2 5 10 3

5 3 7 9

8 6 8 4 5

5 10 3 6 9

3 03

8 4

10 2

0

8 6

0

7 4 8

1 2 5

9 35 3

6 4 8 5

10 6 3 9

5

9

30 9

4 8

6 3

4 5

6 9 1 2

3

10 5

0 7

0 3 0 5

7 4

An example of this bijection

23
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An example of this bijection

5 7 9

4 6 8 4 5

1 10 3 6 9

3 0 5 9

4 7 8 4 5

1 2 3 6 9

3 03 5

4 7 6 4 5

1 2 10 6 9

3 03 7

5 9

4 7 6 8 5

1 2 10 5 9

03 7 5

4 7 6 8 5

1 2 10 3 9

0 03 7

=
5 9 3

4 7 6 8 4 8 5

1 2 10 5 6 3 9

3 7

· · ·

4 5

1 9 3

9 2 5

3 3 5 7 9
7 8 4 6 4 8 5

2 5 6 3 9

�(�) =
✓

4 5

6 3 1 3 9

8 4 5 9 2

3 3 5 7 9
7 8 4 4 6 8 5

10 1 6 2 5 9 3

= '(�)

7 8

2 5

7

8 6

5 10

0

8 8

5 3

0

8 4

3 6

3 9 3

8 4

5 6

0 3 0 9

3 6

4 8

1 10
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Some related works

H̃�(X ; q, t) =
X

�

perm(�)x�tmaj(�)qquinv(�)

H̃�(X ; q, t) = qn(�
0)
X

µ

P�µ(t, q
�1)mµ(X ), where

P�µ(t, q) =
X

{⌫}

q�1(⌫)
Y

ij

�⌫i+1,j |⌫i,j
(t j�iq�i��j ; q)

is a manifestly positive polynomial in q and t.
Example: For � = (2, 2, 1) and µ = (4, 1),

P�µ(t, q) = q2 + q3 + tq3 + q4 + tq4.

summed over quinv–sorted tableaux. On the other hand, through an
integrable lattice model construction and matrix product formula for
Macdonald polynomials by Cantini, de Gier and Wheeler (2015),

Theorem (Mandelshtam, 2023)

Theorem (Garbali and Wheeler, 2020)
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Theorem (J. and Lin, 2025): Let [�] denote the row-equivalent class
of �, and let A be the family of new statistics. Then for every ⌘ 2 A,

Some related works

X

⌧2[�]

tmaj(⌧)q⌘(⌧) =
X

⌧2[�]

tmaj(⌧)qquinv(⌧).

Here A \ {inv , quinv} = ; and A contains 16 statistics.

Theorem (J. and Lin, 2025): Let C�(�) and C†(�) be the sets of
canonical and dual canonical tableaux of the Young diagram of �,
respectively. Then for " 2 {�, †} and four statistics ⌘ 2 A,

H̃�(X ; q, t) =
X

�2C"(�)

d"(�)x
�tmaj(�)q⌘(�),

where d"(�) is a t-multinomial. These four compact formulas will
produce four explicit expressions of P�µ(t, q). One of them is
consistent with the one by Garbali and Wheeler (2020).
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Thank you!
https://arxiv.org/pdf/2407.14099
https://arxiv.org/pdf/2506.23373


