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Abstract. We study random unlabelled k-trees by combining the colouring approach by Gainer-
Dewar and Gessel (2014) with the cycle pointing method by Bodirsky, Fusy, Kang and Vigerske
(2011). Our main applications are Gromov–Hausdorff–Prokhorov and Benjamini–Schramm limits
that describe their asymptotic geometric shape on a global and local scale as the number of (k+ 1)-
cliques tends to infinity.

1. Introduction

A k-tree, or k-dimensional tree, may be defined recursively: it is either a complete graph on
k vertices or a graph obtained from a smaller k-tree by adjoining a new vertex together with k
edges, connecting it to a k-clique of the smaller k-tree. This concept generalizes naturally trees,
which correspond to the special case k = 1. We may distinguish k-trees whose vertices are labelled
by elements of some fixed set, and unlabelled k-trees, which are k-trees considered up to graph
isomorphism. It is customary to index k-trees by their number of (k + 1)-cliques, that are called
hedra in this context. Thus, the number of vertices in a k-tree having n hedra is given by n+k. For
instance, there are 5 different 2-trees with 4 hedra; see Figure 1. A k-clique in a k-tree is usually
called a front.

Figure 1. All unlabelled 2-trees with 4 hedra (triangles)

The counting problem of the class of k-trees has a long history. The number of labelled k-trees of
any fixed size was obtained by Beineke, Pippert, Moon and Foata [5, 11, 20], and the enumeration
of unlabelled 1-trees is a classical result attributed to Otter [21]. Subsequently, unlabelled 2-trees
were counted by Harary and Palmer [15, 16] as well as Fowler, Gessel, Labelle and Leroux [12]
using the dissimilarity characteristic theorem. However, counting general unlabelled k-trees (k ≥ 3)
was a long-standing open problem, which was only recently solved by Gainer-Dewar [13] using Γ-
species. A simpler proof that combines front-colourings with hedron-labelings was later discovered
by Gainer-Dewar and Gessel [14]. The advantage of this approach is that front-colouring breaks the
symmetry of unlabelled k-trees and avoids the use of compatible cyclic orientation of each (k + 1)-
clique in a k-tree. Based on the simplified generating functions from [14], Drmota and the first
author [7] have undertaken a systematic asymptotic analysis of unlabelled k-trees using singularity
analysis.
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In the present work we establish a substraction-free combinatorial decomposition of unlabelled
k-trees (see (5.8)). This is motivated by the fact that all prior analyses of unlabelled k-trees (for
k ≥ 2) are based on double-counting arguments in form of a dissymmetry theorem. The substraction
operation in the resulting functional equations of generating series severely complicates any follow-
up probabilistic analyses, since the corresponding Boltzmann sampling procedures have to employ a
costly rejection process. In order to tackle this, we combine the front-colouring method by Gainer-
Dewar and Gessel [14] with the framework of unlabelled R-enriched trees by the second author [26]
and the cycle-pointing method by Bodirsky, Fusy, Kang and Vigerske [3]. The latter approach
is based on the idea to consider graphs marked at a cyclic permutation of some of the vertices,
such that the cycle appears in at least one automorphism. A similar approach was also used in
[28] for unlabelled trees with vertex-degree restrictions, and the present work intersects with this
paper precisely for the case of unrestricted 1-trees. The decomposition in [28] is not suitable for
k-trees if k ≥ 2. Conversely, the decomposition es tablished in the present work is not suitable to
accommodate vertex-degree restrictions of 1-trees.

With the help of a rejection-free sampling procedure, we conduct a probabilistic study of the
random k-tree Un = Un,k chosen uniformly at random among all unlabelled k-trees with n hedra.
Our main results are a Gromov–Hausdorff–Prokhorov scaling limit (Theorem 2.1) and a Benjamini–
Schramm limit (Theorem 2.3) for Un as n tends to infinity, which will be presented in detail in
Section 2 along with a brief probabilistic background on the graph limits.

The rest of this paper is organized as follows. In Section 3 and 4, we review some previous results
on unlabelled k-trees, namely the front-colouring approach and the study of unlabelled R-enriched
trees. In Section 5 we develop a substraction-free decomposition of unlabelled k-trees via the cycle
pointing method, which enables us to prove our main results in Section 6.

Notation. Throughout, we set [n] = {1, 2, . . . , n} for all integers n ≥ 0. The random variables
appearing in this paper are either canonical or defined on a common probability space whose measure

we denote by P. All unspecified limits are taken as n becomes large. We let
d−→ denote convergence

in distribution, and denote equality in distribution by
d
= . The total variation distance of measures

and random variables is denoted by dTV. That is, if X and Y are random variables with values in
a common metric space, then

dTV(X,Y ) = sup
A
|P(X ∈ A)− P(Y ∈ A)| ,(1.1)

with the index A ranging over all Borel measurable subsets of the target space. An event (that
depends on n) holds with high probability, if its probability tends to 1 as n tends to infinity. We
say it is exponentially unlikely if there are constants C, c > 0 such that its probability is bounded by
C exp(−cn) for all n. Likewise, we say it is exponentially likely if its complement is exponentially
unlikely. For any integer n ≥ 0 and any power series f(z), we let [zn]f(z) denote the coefficient of
zn in f(z).

2. Probabilistic background and main results

2.1. Scaling limits - what a random graph looks like when viewed from far away. A
precise statement of the scaling limits of random unlabelled k-trees is established in Theorem 2.1.
The reader familiar with the scaling limits may skip subsection 2.1.1, 2.1.2 and 2.1.3.

2.1.1. Gromov–Hausdorff–Prokhorov convergence. We briefly recall some probabilistic background
following the paper [19, Sec. 6] by Miermont. Suppose that X = (X, dX) and Y = (Y, dY ) are
compact metric spaces, the diameter of a space X is denoted by

D(X) = sup
x,x′∈X

dX(x, x′).

A correspondence between the spaces X and Y is a subset R ⊂ X × Y such that for any x ∈ X
there is a point y ∈ Y with (x, y) ∈ R, and conversely for any y ∈ Y there is a point x ∈ X with
(x, y) ∈ R. We let C(X,Y ) denote the collection of all correspondences between X and Y . We also
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define the subset Cc(X,Y ) ⊂ C(X,Y ) of all correspondences that are compact. The distortion of
the correspondence R may be defined as the supremum

dis(R) = sup{|dX(x1, x2)− dY (y1, y2)| | (x1, y1), (x2, y2) ∈ R}.

Suppose that we are additionally given a Borel probability measure µX on X and a Borel probability
measure µY on Y , a coupling of µX and µY is a probability measure ν on the product space X ×Y
such that the pushforward-measures along the restrictions πX : X × Y → X and πY : X × Y → Y
are equal to µX and µY . That is, ν(A× Y ) = µX(A) for all Borel measurable subsets A ⊂ X, and
ν(X ×B) = µY (B) for all Borel measurable subsets B ⊂ Y . We letM(X,Y ) denote the collection
of such couplings ν. Informally, a coupling should be viewed as a clever way to jointly construct
a µX -distributed random variable together with a µY -distributed random variable. The Gromov–
Hausdorff–Prokhorov distance between the measured metric spaces (X, dX , µX) and (Y, dY , µY ) may
be defined by

(2.1) dGHP((X, dX , µX), (Y, dY , µY )) =

inf{ε > 0 | ∃R ∈ Cc(X,Y ), ν ∈M(X,Y ) : dis(R) ≤ 2ε, ν(R) > 1− ε.}

The collection K of (representatives of isometry classes of) compact measured metric spaces equipped
with the Gromov–Hausdorff–Prokhororv metric is a Polish space, meaning that standard probabilis-
tic notions like distributional convergence of random elements apply.

2.1.2. Consequences of Gromov–Hausdorff–Prokhorov convergence. Suppose that (Xn, dXn , µXn) is a

sequence of random compact measured metric spaces satisfying (Xn, dXn , µXn)
d−→ (X, dX, µX) in the

Gromov–Hausdorff–Prokhorov sense for some random compact measured metric space (X, dX, µX).
The well-known continuous mapping theorem ensures that for any Polish space Y and any function
f : K→ Y whose points of continuity Ω ⊂ K satisfy P((X, dX, µX) ∈ Ω) = 1 it holds that

f(Xn, dXn , µXn)
d−→ f(X, dX, µX).

In particular, this applies to the diameter D(·) which is continuous on K, yielding

D(Xn, dXn , µXn)
d−→D(X, dX, µX).(2.2)

Let r ≥ 2 denote a fixed integer and suppose that the compact metric space (X, dX) additionally
has r distinguished compact subsets C1, . . . , Cr, resulting in an r-pointed space X•

r
. Likewise, let

D1, . . . , Dr denote r distinguished compact subsets of the space Y , resulting in an r-pointed space
Y •

r
. We let C•(X•r , Y •r) denote the collection of correspondences R ∈ C(X,Y ) that additionally

satisfy Ci×Di ∈ C(Ci, Di) for all 1 ≤ i ≤ r. The marked Gromov–Hausdorff distance between these
marked spaces is defined by

d•GH(X•
r
, Y •

r
) = max

(
1

2
inf

R∈C•c (X,Y )
dis(R)

)
.

This makes the collection of (representatives of mark-preserving isometry classes of) marked com-
pact metric spaces a Polish space, hence standard notions of convergence of random elements apply.

Now suppose that, as before, that (Xn, dXn , µXn)
d−→ (X, dX, µX) in the Gromov–Hausdorff–Prokhorov

sense. Consider the space X•
r

n obtained by marking r independently µXn-distributed points (xi,n)1≤i≤r
of Xn. Likewise, let X•

r
be marked at independent µX-distributed points (xi)1≤i≤r. It was shown

in [19, Prop. 10] that the distributional convergence in the Gromov–Hausdorff–Prokhorov sense
entails that

X•
r

n
d−→X•

r

in the marked Gromov–Hausdorff sense. By the continuous mapping theorem, this implies

(dXn(xi,n, xj,n))1≤i,j≤r
d−→ (dX(xi, xj))1≤i,j≤r.(2.3)
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2.1.3. The Brownian tree. A famous and universal distributional limit object is Aldous’ Brownian
tree (Te, dTe , µTe). The construction is as follows. Consider a Brownian excursion (et : 0 ≤ t ≤ 1) of
duration 1. A possible construction of this continuous stochastic process is to start with a Brownian
motion (or Wiener process) (B(t) : t ≥ 0) and consider the last time τ− that B(t) hits zero before
time t = 1, and the first time τ+ it hits zero after time t = 1. We may then set

et =
|B(τ−(1− t) + τ+t)|√

τ+ − τ−
, for 0 ≤ t ≤ 1.

With probability 1 this is a well-defined continuous function. For all x, y ∈ [0, 1] with x ≤ y we set

d̄(x, y) = ex + ey − 2 inf
x≤t≤y

et.(2.4)

If x > y we set d̄(x, y) := d̄(y, x). Topologically, the Brownian tree Te is defined as a random
quotient metric space Te = [0, 1]/ ∼ with the equivalence relation ∼ defined by

x ∼ y if and only if d̄(x, y) = 0.

The distance d̄ is lifted to a distance dTe along the canonical surjection π : [0, 1] → [0, 1]/ ∼. The
Borel probability measure on Te is defined as the pushforward of the Lebesgue measure λ on the
unit interval [0, 1]. That is, for any Borel measurable subset A ⊂ Te we set µTe(A) := λ(π−1(A)).
By (2.4), the diameter D(Te) admits the expression

D(Te)
d
= sup

0≤t1≤t2≤1
(e(t1) + e(t2)− 2 inf

t1≤t≤t2
e(t)).(2.5)

If we sample two points v1 and v2 of the Brownian tree Te independently according to the measure
µTe , then by construction

dTe(v1, v2)
d
= d̄(x1, x2),

with x1 and x2 denoting two independent and uniformly selected points of the unit interval. The
Brownian tree is known to satisfy a re-rooting invariance as stated by Aldous [1, Eq. (20)], meaning

that the coset 0̄ of 0 ∈ [0, 1] satisfies (Te, v1)
d
= (Te, 0̄). Hence

dTe(v1, v2)
d
= d̄(0, x1) = ex1 .(2.6)

It is a well-known fact (see for example [9, Prop. 3.4]) that the standardized Brownian excursion
evaluated at a uniformly and independently selected point of the unit interval follows the distribution

P(ex1 ∈ A) =

∫
A

4s exp(−2s2) ds(2.7)

for A a Borel subset of [0,∞[. Hence 2ex1 follows the Rayleigh distribution with probability density
s exp(−s2/2).

Now we are ready to state our first main result.

2.1.4. Scaling limits of random unlabelled k-trees. Our first main result establishes the Brownian
tree (Te, dTe , µTe) as the Gromov–Hausdorff–Prokhorov scaling limit of the random unlabelled k-
tree Un.

Theorem 2.1. Let µn denote the uniform measure on the set of vertices of Un. Then, there is a
constant ck > 0 such that

(Un, ckn
−1/2dUn , µn)

d−→ (Te, dTe , µTe)
in the Gromov–Hausdorff–Prokhorov sense.

The scaling constant is given by

ck = kHk

√√√√1 + k

∞∑
i=2

B̄′
1k

(ρik)ρ
i
k.(2.8)
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k ck ρk ck/(kHk)
1 1.102725 0.338321 1.102725
2 3.126190 0.177099 1.042063
3 5.643857 0.119674 1.026155
4 8.491071 0.090334 1.018928
5 11.585821 0.072539 1.014816
6 14.878854 0.060597 1.012166
7 18.337291 0.052031 1.010319
8 21.937615 0.045585 1.008957
9 25.662173 0.040561 1.007912
10 29.497218 0.036533 1.007085

Table 1. Numerical approximations of constants for unlabelled k-trees

Here Hk =
∑k

i=1 i
−1 denotes the kth harmonic number. B̄1k(z) is the unique power-series satisfying

B̄1k(z) = z exp

(
k

∞∑
i=1

B̄1k(zi)

i

)
,

and ρk denotes its radius of convergence. See Table 1 for numerical approximations up to k = 10.1

It follows from [7, Thm. 3] that ρk = 1
ek−

1
2e3k2

+O( 1
k3

) and k
∑∞

i=2 B̄
′
1k

(ρik)ρ
i
k = O( 1k ) as k becomes

large, yielding

ck = (1 +O(k−1))kHk.

The diameter D(·) is a Gromov–Hausdorff continuous function. Hence, using (2.2) and (2.5),
Theorem 2.1 implies that

ckn
−1/2D(Un)

d−→D(Te)
d
= sup

0≤t1≤t2≤1
(e(t1) + e(t2)− 2 inf

t1≤t≤t2
e(t)),(2.9)

with e = (et)0≤t≤1 denoting the Brownian excursion of length 1. Let v1n and v2n denote two indepen-
dently and uniformly selected vertices of Un. Using (2.3),(2.6), and (2.7), the Gromov–Hausdorff–
Prokhorov convergence of Theorem 2.1 implies that

2ckdUn(v1n, v
2
n)/
√
n

d−→Rayleigh(1),(2.10)

with the limiting Rayleigh(1) distribution having density x exp(−x2/2), x ≥ 0. In fact, it also
implies a scaling limit for the vector of pairwise distances for any finite fixed number of vertices
that are uniformly and independently sampled.

It is important to keep in mind that in the present work we treat unlabelled k-trees, whose study
is severely complicated by the presence of symmetries. Our results parallel a list of properties
of random labelled k-trees, but do not encompass them and are not encompassed by them. The
Rayleigh distribution has been observed to arise as scaling limit of the distance of independent
random vertices in random labelled k-trees by Darrasse and Soria [6], but the scaling constant of
(2.10) differs from the labelled case. Drmota and both authors [8] gave a scaling limit for random
labelled k-trees, of course also with a different scaling constant.

In order to deduce convergence of the moments of D(Un) and dUn(v1n, v
2
n), it is sufficient to verify

p-uniform integrability of the diameter D(Un) for arbitrarily large integers p ≥ 1. For this it suffices
to show that for each p ≥ 1 the Lp-norm of the rescaled diameter D(Un)/

√
n remains bounded as

n→∞. And this is is ensured by the following sharp tail-bound, which will be proved in Section 6.

1The numerical approximation of the constant ρk in Table 1 was done by taking m := 30, calculating a truncation

B̄
[m]

1k
(z) up to order m of B̄1k (z) via the recursive relation derived from Equation (4.1), and numerically solving the

truncated system x exp(k
∑m
i=2 i

−1B̄
[m]

1k
(xi)) = 1/(ek).
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Theorem 2.2. There are constants C, c > 0 such that for all n ≥ 1 and x ≥ 0 it holds that

P(D(Un) ≥ x) ≤ C exp(−cx2/n).

This entails that for any fixed integer p ≥ 1 we obtain

E[D(Un)p] ∼ c−pk np/2E[D(Te)p] and E[dUn(v1n, v
2
n)p] ∼ np/22−p/2c−pk Γ(1 + p/2)(2.11)

as n becomes large. The moments of the diameter of Te are known and given by

E[D(Te)] =
4

3

√
π/2, E[D(Te)2] =

2

3

(
1 +

π2

3

)
, E[D(Te)3] = 2

√
2π,

E[D(Te)k] =
2k/2

3
k(k − 1)(k − 3)Γ(k/2)(ζ(k − 2)− ζ(k)) for k ≥ 4.

Here ζ refers to the Riemann’s zeta function, and Γ to Euler’s gamma function. See [1, Sec. 3.4]
and [27, Sec. 1.1].

2.2. Benjamini–Schramm limits - zooming in on a random vertex in a random graph.
A precise statement of the Benjamini-Schramm limits of random unlabelled k-trees is established
in Theorem 2.3. The reader familiar with the local limits may skip subsection 2.2.1.

2.2.1. Local convergence. Consider two connected, rooted, and locally finite graphs G• = (G, vG)
and H• = (H, vH). For any integer k ≥ 0 we may define the k-neighbourhood Uk(G

•) as the vertex-
rooted subgraph of G• induced by all vertices with distance at most k from vG. We construct the
distance

d(G•, H•) = 2− sup{k∈N0 |Uk(G•)'Uk(H•)}

with Uk(G
•) ' Uk(H

•) denoting isomorphism of rooted graphs. This defines a pre-metric on the
collection of all rooted locally finite connected graphs. Two such graphs have distance zero, if and
only if they are isomorphic. Hence this yields a metric on the collection (representatives of) all
unlabelled, connected, rooted, locally finite graphs. The resulting space B is Polish, meaning that
standard probabilistic convergence concepts apply. For example, a random rooted graph G• ∈ B is
the the local weak limit of a sequence G•n = (Gn, vn), n ∈ N of random elements of this space, if it
is the weak limit with respect to this metric. That is, if

lim
n→∞

E[f(G•n)] = E[f(G•)]

for any bounded continuous function f : B→ R. The neighbourhood projections (Uk(·))k≥0 form a

convergence determining family, meaning that G•n
d−→G• is equivalent to

lim
n→∞

P(Uk(G
•
n) ' G•) = P(Uk(G

•) ' G•).(2.12)

for any rooted graph G• and all integers k ≥ 0. If the conditional distribution of vn given that the
graph Gn is uniform on the vertex set V (Gn), then the limit G• is often also called the Benjamini–
Schramm limit of the sequence (Gn)n.

2.2.2. Local convergence of random unlabelled k-trees. Our second main result is a local weak limit
for Un that describes the asymptotic behaviour of the r-neighbourhoods Ur(Un, v

∗) of a uniform
random vertex v∗ of the graph Un. We even obtain convergence in total variation of these neigh-
bourhoods when r = rn depends on n and satisfies rn = o(

√
n). More precisely,

Theorem 2.3. The random rooted unlabelled k-tree (Un, vn) converges in the Benjamini–Schramm

sense towards a random infinite rooted k-tree Û. Furthermore, for each sequence rn = o(
√
n) it

holds that

dTV(Urn(Un, vn), Urn(Û))→ 0,

with vn denoting a uniformly selected vertex of Un.
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Figure 2. Two coloured hedron-labelled 2-trees with 4 hedra

In other words,

lim
n→∞

sup
A

∣∣∣P(Urn(Un, vn) ∈ A)− P(Urn(Û) ∈ A)
∣∣∣ = 0,

with the index A ranging over all countable collections of finite rooted graphs.
This strengthened form of convergence is best possible: Theorem 2.2 asserts that the diameter

of the random unlabelled k-tree Un has order
√
n. Since the diameter of Û is almost surely infinite,

the local convergence of Un towards Û fails for rn-neighbourhoods if n−1/2rn does not converge to
zero.

We emphasize again that we treat random unlabelled k-trees. The second author [25] established
a Benjamini–Schramm limit that describes the asymptotic behaviour of the vicinity of a typical
vertex in random labelled k-trees.

2.3. Asymptotic enumeration. The cycle pointing approach allows us also to recover the as-
ymptotic expression

un ∼
(kρk)

−k

k2k!
√

2π

1 + k
∑
`≥2

B̄′1k(ρ`k)ρ
`
k

3/2

n−5/2ρ−nk

for the number un of unlabelled k-trees with n hedra that was proven by Drmota and the first
author in [7, Thm. 3] via the dissymmetry equation. See Section 5.4 for details. Unlabelled graphs
were recently studied using the cycle-pointing method in [23], but the results do not apply to k-trees
for k ≥ 2.

3. The Gainer-Dewar–Gessel decomposition

3.1. Vertex colourings, hedron labelings, and a bijection with k-coding trees. We recall
some results and terminology from [13, 14]. Any two hedra h1 and h2 in a k-tree that intersect at a
front f are termed adjacent. If this is the case, then a front f1 of h1 and a front f2 of h2 are called
mirror with respect to f if f1 ∩ f = f2 ∩ f .

A coloured hedron-labelled k-tree with n hedra is a k-tree where the hedra are labelled by distinct
integers from [n] and the fronts are coloured with integers from [k + 1]. We require that any two
distinct fronts that belong to the same hedron must have distinct colours, and any two distinct
fronts that are mirror with respect to some other front must have the same colour. This way, the
k + 1 fronts belonging to any single hedron are coloured with distinct integers from [k + 1]. See
Figure 2 for two examples, where labels are denoted by boxed integers.
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Figure 3. Two 2-coding trees that respectively correspond to the 2-trees in Figure 2

It is not hard to see that the colours of all fronts of any single hedron already determine the
colours of all other fronts in the k-tree. However, the total number of front-colourings may vary
according to the k-tree we consider.

We now introduce k-coding trees. A (coloured and labelled) k-coding tree is an unordered tree
with a proper bipartition of its vertex set into white and black vertices. We require that each black
vertex has precisely k+ 1 white neighbours. The n black vertices are labelled with distinct integers
from [n], and to each white-vertex we assign a colour from [k + 1], such that each black vertex has
precisely one neighbour with colour i for all i ∈ [k + 1].

There is a bijection φ between the set Kn,k of coloured hedron-labelled k-trees with n hedra, and
the set Tn,k of (coloured and labelled) coding trees with n black vertices; see [14], which is analogous
to [13, Thm. 3.4]:

To construct a k-coding tree from a coloured hedron-labelled k-tree, we assign to each hedron a
black-vertex with the same label and to each front a white vertex with the same colour. We connect
a white vertex with a black vertex by an edge if the front corresponding to the white vertex is a
k-subset of the hedron corresponding to the black vertex.

For the inverse map, note that in order to construct a k-tree from a k-coding tree we require
knowledge of the colouring. There are multiple ways to glue two front-coloured hedra together at
a specified front colour, but only one way such that afterwards any pair of fronts that are mirror
with respect to the resulting shared front have the same colour. For example, Figure 3 depicts
two 2-coding trees that differ only in the colouring. Figure 2 shows the corresponding coloured
hedron-labelled 2-trees. Note that the 2-trees in this example even remain different if we forget
about their colours and labels.

For any integer n ≥ 0 we let Sn denote the symmetric group of degree n. The groups Sn and
Sk+1 both operate on the set Kn,k of coloured hedron-labelled k-trees, and the two actions commute.
This induces an action of the group Sn on the set Kn,k/Sk+1 of orbits, which may be identified
with k-trees on labelled hedra.

Any graph isomorphism between k-trees also induces a bijection between their sets of hedra.
Thus, any two hedron-labelled k-trees are identical as unlabelled graphs if and only if one may
be obtained from the other via relabelling of hedra. Thus, the Sn-orbits of the induced action
correspond precisely to the unlabelled k-trees with n hedra.

Since the two actions on Kn,k commute, it follows that there is also a canonical correspondence
between unlabelled k-trees and orbits of the group action of Sk+1 on the set Kn,k/Sn. Elements of
Kn,k/Sn correspond to k-trees that are unlabelled but coloured. Hence we refer to the Sk+1-orbits
of this group action as colour-orbits of unlabelled k-trees.

As the bijection φ is compatible with the actions of both groups Sn and Sk+1, this reduces the
study of unlabelled k-trees to the study of colour-orbits of unlabelled k-coding trees, that is, orbits
of the group action of Sk+1 on Tn,k/Sn.

3.2. Burnside’s Lemma. The enumeration of colour-orbits of unlabelled k-trees and k-coding
trees is undertaken using Burnside’s Lemma, which we briefly recall in this section. Given a per-
mutation σ ∈ Sm, its cycle type λ = (1λ1 2λ2 · · · mλm) is defined by letting λi denote the number
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of cycles of length i in the cycle decomposition of σ. Sometimes we simply write the parts of λ in
a weakly decreasing manner, that is, λ = (m, . . . ,m︸ ︷︷ ︸

λm

, . . . , 2, . . . , 2︸ ︷︷ ︸
λ2

, 1, . . . , 1︸ ︷︷ ︸
λ1

). We will also omit the

parentheses when there is no risk of confusion. Since m = λ1 + 2λ2 + · · ·+mλm, the cycle type λ
may be identified with a partition of m. That is, a permutation with λi cycles of length i for each i
corresponds to the partition in which the multiplicity of i as a part is λi. We write λ ` m to denote
that λ is a partition of m and set

zλ = 1λ1λ1!2
λ2λ2! · · ·mλmλm!,(3.1)

so that m!/zλ is the number of permutations in Sm with cycle type λ. Moreover, for any d ≥ 1, we
let λd denote the cycle type of the dth power of a fixed permutation with cycle type λ.

We let A ⊂ R[[z]] denote the subset of all formal power series whose coefficients are non-negative.
Suppose that we are given a non-empty set S together with a weight-function ω : S → A, such that
the sum

∑
s∈S ω(s) is well-defined in A. That is, for any n ≥ 0, the coefficients ([zn]ω(s))s∈S form

a summable family of non-negative real numbers. Suppose that we are additionally given a group
action of the symmetric group Sm on S that preserves weights. Thus, all elements of a common
orbit O have the same ω-weight, which we denote by ω(O) and call the weight of the orbit O. For
each permutation σ ∈ Sm, we let Fix(σ) = {s ∈ S | σ.s = s} denote the set of fixed points of σ.
The corresponding inventory Fixλ :=

∑
s∈Fix(σ) ω(s) only depends on the cycle type λ ` m of σ.

Lemma 3.1 (Burnside’s Lemma for the symmetric group). The sum of the weights of all Sm-orbits
is given by ∑

O∈S/Sm

ω(O) =
∑
λ`m

Fixλ
zλ

.

Suppose that for each type λ ` m we fix some permutation σλ ∈ Sm with type λ. Let

Zm =
∑

O∈S/Sm

ω(O)

denote the sum of the weights of all orbits. The following probabilistic application of Burnside’s
Lemma will turn out to be useful.

Lemma 3.2. Suppose that all ω-weights are positive real numbers. We may sample a random type
λ ` m with probability

P(λ = λ) = z−1λ Z−1m Fixλ

and then select an element s from Fix(σλ) with probability proportional to its ω-weight. Then the

orbit O corresponding to s is distributed according to

P(O = O) = ω(O)Z−1m .

Proof. Let O ∈ S/Sm be an arbitrary orbit. Clearly the symmetric group Sm also operates on O,
and applying Burnside’s Lemma 3.1 to this operation yields

ω(O) =
∑
λ`m

z−1λ

∑
s∈Fix(σλ)∩O

ω(s).

Hence

P(Ō = O) =
∑
λ`m

P(λ̄ = λ)P(s̄ ∈ Fix(σλ) ∩O | λ̄ = λ)

=
∑
λ`m

(
Fixλ
Zm zλ

) ∑
s∈Fix(σλ)∩O

ω(s)

Fixλ


= Z−1m ω(O).

�
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The operation of the group Sm on the set S induces an operation on the set M(S) of all finite
multi-sets of elements in S. The weight-function ω on S extends in a natural way to M(S) by
defining the weight of a multi-set to be the product of the weights of its elements (with repetitions).

For any σ ∈ Sm, we let FixM(S)(σ) denote the set of all M ∈M(S) satisfying σ.M = M .

Lemma 3.3 ([14, Lem. 2]). For each σ ∈ Sm, it holds that

∑
M∈FixM(S)(σ)

ω(M) = exp

∑
i≥1

1

i

∑
s∈FixS(σi)

ω(s)i

 .(3.2)

In [14, Lem. 2] a similar result was stated. However, instead of taking the power ω(s)i on the
right-hand side, the substitution operation ω(s)(zi) was employed. (This makes no difference for
the special cases in which this result is applied in [14], because there ω(s) is always some power of
z and the two operations coincide.)

Proof of Lemma 3.3. A multiset M ∈ M(S) is fixed by σ, if and only if it is a multi-set union of
orbits of S under the action of the generated subgroup 〈σ〉. So let (Oj)j∈J denote the collection of
these orbits. For each j ∈ J , we set rj = |Oj | and select a representative sj ∈ Oj . Any M ∈M(S)
may be written uniquely as a multi-set union of `j ≥ 0 copies of Oj for all j ∈ J , with

∑
j∈J `j <∞.

It follows that ∑
M∈FixM(S)(σ)

ω(M) =
∏
j∈J

∑
`j≥0

ω(sj)
`jrj =

∏
j∈J

1

1− ω(sj)rj
.(3.3)

Here we have used the assumption, that the family (ω(s))s∈S is summable, which implies that all
products with infinitely many factors 6= 1 in Equation (3.3) vanish. That is, we really only sum up
weights of finite multi-sets. Applying the logarithm operator to Equation (3.3) yields

log

 ∑
M∈FixM(S)(σ)

ω(M)

 =
∑
j∈J

∑
`≥1

ω(sj)
`rj

`
.(3.4)

We now focus on the argument of the exponential operator on the right-hand side of Equa-
tion (3.2). Clearly we may write

∞∑
i=1

1

i

∑
s∈FixS(σi)

ω(s)i =
∑
j∈J

∑
i≥1

1

i

∑
s∈Oj∩FixS(σi)

ω(s)i.

It holds that Oj ⊂ FixS(σi) if i is a multiple of rj , and Oj ∩ FixS(σi) = ∅ otherwise. Hence∑
j∈J

∑
i≥1

1

i

∑
s∈Oj∩FixS(σi)

ω(s)i =
∑
j∈J

∑
`≥1

ω(s)`rj

`
.

Together with Equation (3.4), this verifies Equation (3.2). �

3.3. Generating functions. We let U(z) denote the generating series of unlabelled (uncoloured)
k-trees indexed by their number of hedra. Equivalently, we may state that U(z) is the generating
series of colour-orbits of unlabelled (coloured) k-coding trees, indexed by their number of black
vertices. The dissymmetry theorem proved by Gainer-Dewar and Gessel [14, Lem. 5, 6] expresses
this function by the Equation

U(z) = B(z) + C(z)− E(z).(3.5)

Here B(z), C(z), and E(z) denote the generating functions for colour-orbits of unlabelled (coloured)
k-coding trees that are rooted at a black vertex, a white vertex, and an edge, respectively. That
is, the coefficient of zn in these series counts the number of Sk+1-orbits of unlabelled (coloured)
k-coding trees T of size n (having n black vertices) that are rooted at v, which is a black vertex, a
white vertex, or an edge.
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Our goal in Section 5 is to provide a substraction-free alternative (Equation (5.8)) to Equa-
tion (3.5), based on the results of Gainer-Dewar and Gessel [13, Thm. 7] concerning k-coding trees
rooted at a black or a white vertex. These classes may be decomposed by applying Lemma 3.3
and Burnside’s Lemma (Lemma 3.1) to recolouring operations on rooted, unlabelled, and coloured
objects. We briefly recall the arguments in [14], as we are going to use these decompositions (rather
than just the resulting equations of generating functions) later on.

For any cycle type λ ` k+1, we fix a permutation πλ ∈ Sk+1 having type λ and let Bλ(z) denote
the generating function of coloured, unlabelled black-rooted k-coding trees that are invariant under
πλ. Furthermore, for any i ≥ 1 we recall that λi denote the cycle type of (πλ)i. This notion does
not depend on the choice of πλ. Burnside’s Lemma (Lemma 3.1) yields

B(z) =
∑
λ`k+1

Bλ(z)

zλ
.(3.6)

Each colour-orbit of a C-object contains a coloured, unlabelled coding-tree where the white root-
vertex has colour k+ 1. Thus the colour-orbits of the action of Sk+1 on all white-rooted, coloured,
unlabelled k-coding trees correspond precisely to the colour-orbits of the action of Sk on coloured,
unlabelled k-coding trees marked at a white-vertex with colour k+ 1. Applying Burnside’s Lemma
to this action of Sk yields

C(z) =
∑
µ`k

Cµ(z)

zµ
(3.7)

with Cµ(z) denoting the generating series of all coloured unlabelled k-coding trees that are rooted at
a white vertex with colour k+ 1 and that are invariant under recolouring by a fixed (but arbitrary)
permutation σµ ∈ Sk with cycle type µ.

We define the generating function B̄µ(z) in the same way as Cµ(z), but only count the k-coding
trees where the white root with colour k+1 has precisely one black neighbour. This black neighbour
may be interpreted as a black root vertex and B̄µ-objects are termed black-rooted reduced k-coding
trees.

We may view a white-rooted, coloured, unlabelled k-coding tree whose root has colour k + 1 as
a multi-set of black-rooted reduced k-coding trees. Hence Lemma 3.3 applies, yielding

Cµ(z) = exp

( ∞∑
i=1

B̄µi(z
i)

i

)
.(3.8)

If we delete the root of a B̄µ-object, we are left with k white-rooted unlabelled coloured k-coding
trees T1, T2, . . . , Tk whose roots are coloured from 1 to k. For any cycle c = (c1, c2, . . . , c`) of σµ, the

trees Tc1 , Tc2 , . . . , Tc` belong to the same colour-orbit, and each is invariant under relabeling by σ`µ.
Setting d = min(c1, c2, . . . , c`), the result of switching the colour d with the colour k+ 1 in the tree
Td yields a reduced tree, that together with the cycle c already contains all information on the trees
Tc1 , Tc2 , . . . , Tc` . Hence the trees corresponding to c are enumerated by Cµ`(z

`), and the generating

series for B̄µ-objects is given by

B̄µ(z) = z
∏
i∈µ

Cµi(z
i),(3.9)

with the index i ranging over all parts of the type µ. Similarly, we may argue that

Bλ(z) = z
∏
i∈λ

C(λi)−(zi),(3.10)

with (λi)− denoting the cycle type obtained by removing one part of length 1 from λi. In fact, by
definition Cλi(z

i) = C(λi)−(zi) and λi contains at least one part of length 1. For example, when

k = 2, we have B̄2(z) = zC1,1(z
2) and B2,1(z) = zC1,1(z

2)C2(z).
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4. k-trees rooted at a front of distinguishable vertices

We let ρk denote the radius of convergence of the generating series U(z) of unlabelled k-trees.
Drmota and the first author [7] established the following result that shows the dominating role of
the cycle type 1k in this context.

Lemma 4.1 ([7, Thm. 3]). The series C1k(z) and B̄1k(z) have a dominant singularity of square-
root type at z = ρk < 1 and it holds that B̄1k(ρk) = k−1. The series Cµ(z) and B̄µ(z) are analytic

at ρk if µ 6= 1k. The series U(z) has a dominant singularity of type (1− z/ρk)−3/2.

The class of labelled k-trees admits a recursive decomposition [8] that is based on k-trees rooted
at a front of distinguishable vertices. Two such elements are considered isomorphic, if there is a
graph isomorphism that pointwisely preserves the root-front. Hence the corresponding cycle-index
sums do not count front-rooted unlabelled k-trees, but unlabelled k-trees that are rooted at a front
of distinguishable vertices.

This relates to the present setting as follows. The k-trees counted by B̄1k(z) are unlabelled and
coloured, with a root-front of colour k + 1 that is contained in a unique hedron. The colours 1
to k of the remaining fronts of this hedron uniquely determine the front-colouring of the entire
k-tree, and may be interpreted as a labelling of the k vertices of the root-front. That is, B̄1k(z)
counts unlabelled uncoloured k-trees that are rooted at a front of k distinguishable vertices that is
contained in a unique hedron. The series C1k(z) counts such objects without the restraint that the
root-front belongs to a unique hedron. By (3.8) and (3.9) these series satisfy the equations

B̄1k(z) = z exp

(
k
∞∑
i=1

B̄1k(zi)

i

)
and C1k(z) = exp

( ∞∑
i=1

B̄1k(zi)

i

)
,(4.1)

which agree with the cycle-index sums associated to the decomposition of labelled k-trees in [8].
In [26] k-trees rooted at a front of distinguishable vertices were studied as special cases of unla-

belled R-enriched trees. Let ck be defined as in (2.8).

Lemma 4.2 ([26, Sec. 6.5]). Let Gn be either the uniform n-hedra k-tree from the class B̄1k

or C1k . Let µGn denote the uniform measure on the vertices of Gn. Then, the rescaled space
(Gn, ckn

−1/2dGn , µ
G
n) converges in the Gromov–Hausdorff–Prokhorov sense towards the Brownian

tree.
Furthermore, there are constants C, c > 0 such that P(D(Gn) ≥ x) ≤ C exp(−cx2/n) for all n and

x ≥ 0. Let vn be a vertex sampled according to µGn . There is an infinite rooted random graph Ĝ such

that for any sequence rn = o(
√
n) the rn-neighbourhood Urn(·) satisfies dTV(Urn(Gn, vn), Urn(Ĝ))→

0.

Here the limit graph Ĝ does not depend on whether we consider random elements of the class
B̄1k or of the class C1k . Note that the Gromov–Hausdorff convergence of Gn to the Brownian tree
was established in [26], but it is not hard to see that the arguments may be extended to obtain the
Gromov–Hausdorff–Prokhorov convergence. The scaling constant ck is explicit in [26, First display
after Eq. (7.29)] and may be seen to be identical to the expression in (2.8) by straight-forward
calculations.

5. A substraction-free decomposition

5.1. Cycle pointing. Let m ≥ 0 be an integer. Recall that any permutation σ ∈ Sm may be
decomposed in a unique way into a product of disjoint cycles. The cycles correspond to the orbits
of the action of the generated subgroup 〈σ〉 ⊂ Sm on the set of integers [m]. Here we count fixed
points as 1-cycles.

Suppose that the symmetric group Sm acts on a set S. We may consider the cycle-pointed set
S◦ of all pairs (s, c) of any element s ∈ S together with a marked cycle c, for which at least one
permutation σ ∈ Sm satisfies σ.s = s and σ has c as one of its cycles. Naturally, the group Sm acts
on S◦ via ν.(s, c) = (ν.s, νcν−1) for all ν ∈ Sm and (s, c) ∈ S◦.
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Figure 4. The left side shows all possible ways to first colour and then cycle-point
a fixed unlabelled, uncoloured 1-tree with n = 5 hedra (edges). The right side shows
the three corresponding colour-orbits. This demonstrates that if we colour before
applying the cycle-pointing operation, we break the n to 1 relation between pointed
and non-pointed objects.

There is a well-defined map S◦/Sm → S/Sm, that sends the orbit of an element (s, c) ∈ S◦ to
the orbit of s. By [3, Thm. 15], the pre-image of any orbit in S/Sm has precisely m elements. This
completely reduces the task of counting S/Sm to the task of counting S◦/Sm. The latter may be
easier, as the marked cycle provides a point of reference.

Recall that the groups Sn and Sk+1 operate on the class Kn,k of coloured hedron-labelled k-trees,
and that the two operations commute. We would like to study unlabelled, uncoloured k-trees,
that correspond bijectively to the elements of the collection (Kn,k/Sn)/Sk+1 of colour-orbits of
unlabelled, coloured k-trees.

We have to take great care when trying to apply the cycle-pointing method to this setting, as there
are luring pitfalls: For example, we could apply the cycle-pointing operation to the operation of Sn

on the set Kn,k, resulting in a set K◦nn,k. The orbits from K◦nn,k/Sn are in an n to 1 correspondence

to the unlabelled coloured k-trees from Kn,k/Sn, however this relation breaks when passing to the
colour-orbits. That is, the orbits from (K◦nn,k/Sn)/Sk+1 satisfy, in general, no longer an n to 1

correspondence to the unlabelled, uncoloured k-trees from (Kn,k/Sn)/Sk+1. A counter-example
where this relation fails is already given for the special case n = 5 and k = 1. See Figure 4.

Let Un denote the set of all unlabelled (uncoloured) k-trees with n hedra. We are going to consider
the action of the symmetric group Sn on the set Kn of n-hedron k-trees with hedra labelled from
1 to n. Clearly there is a bijection from Kn/Sn to Un, and consequently an n to 1 correspondence
from Vn := K◦n/Sn to Un. Compare with Figure 5.

We are going to partition the set Vn into three classes. We define the first class V(1)n ⊂ Vn to be
the subset of all unlabelled k-trees that are cycle pointed at a single hedron. Hence the complement

Vn \ V(1)n consists of all unlabelled cycle-pointed k-trees whose marked cycle has length at least 2.
Elements of the complement have a center of symmetry or cycle-center that may either be a hedron
(as in Figure 6) or a front (as in Figure 7). The idea is that there is a common center of paths that
join consecutive atoms of the cycle in an associated k-coding tree.

We make this precise. Let V ∈ Vn \ V(1)n be an unlabelled (uncoloured) cycle-pointed k-tree
V ∈ Vn whose marked cycle has length ` ≥ 2. We may select a labelled version (K, c) ∈ K◦n of V ,
and then a front-coloured (labelled) version (Kcol, c) ∈ K◦n,k of (K, c). Note that c needs not be a
cycle of an automorphism of K that preserves the colours, see Figure 7 for an example.

The labelled, coloured k-tree Kcol ∈ Kn,k corresponds to a labelled, coloured k-coding tree

T ∈ Tn,k. We may form the tree T uncol by removing the colour-indicators from the white vertices.

The pair (T uncol, c) is a cycle-pointed tree (with labels on vertices instead of hedra) that no longer
contains all information about the k-tree V . (We would require knowledge of the colours to recon-
struct V .) We may consider the ` paths that join consecutive atoms of the marked cycle in T uncol.
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Figure 5. The four possible cycle-pointings of a 2-tree with four hedra.

Each of these paths has odd length since its ends are black vertices. It follows by a general principle
for cycle pointed trees [3, Prop. 24] that all connecting paths share a common center, which may
either be a black or a white vertex. We say that the corresponding hedron or front in V is the
cycle-center (or center of symmetry) of V . This notion does not depend on the choices of colours
and labels in the intermediate steps.

Hence we may split Vn into a disjoint union

Vn = V(1)n t V(2)n t V(3)n .(5.1)

The first part corresponds to unlabelled k-trees with a marked hedron. The second part corresponds
to unlabelled k-trees with a marked cycle of length at least 2, such that the cycle-center is a hedron,
and the third part to the case where the cycle-center is a front. We let V (z), and V (i)(z), i = 1, 2, 3
denote the corresponding generating series. That is,

V (i)(z) =
∑
n≥1
|V(i)n |zn and V (z) =

∑
n≥1
|Vn|zn.

5.2. Structural analysis of the summands. The generating series and bijective arguments of
subsection 3.3 may be interpreted in terms of k-coding trees (rooted for example at black or white
vertices) and in terms of k-trees (rooted at a hedron or a front). In order to avoid confusion, we are
going to interpret everything in terms of k-trees from here on. In particular, we regard B(z) as the
generating series of unlabelled, uncoloured k-trees rooted at a hedron, and C(z) as the generating
series of unlabelled, uncoloured k-trees that are rooted at a front. A front-colouring of a k-tree will
always be subject to the restraints stated in subsection 3.1, that is, the fronts of any hedron are
coloured from 1 to k + 1 and the fronts that are mirror to each other receive the same colour.

5.2.1. Hedron-rooted k-trees. It is clear that V(1)-objects are exactly unlabelled uncoloured hedron-
rooted k-trees, that is,

V (1)(z) = B(z).(5.2)

5.2.2. Cycle-pointed k-trees with a hedron cycle-center. In this subsection we show that there are
only very few cycle-pointed k-trees with a hedron cycle-center.

Lemma 5.1. There are constants C, c > 0 that do not depend on n such that

|V(2)n |
|Vn|

≤ C exp(−cn).

Proof. For this it suffices to show that the radius of convergence of the generating series V (2)(z) is
strictly larger than the radius of convergence ρk of the generating series V (z). Indeed, if this is the

case, then there is an ε > 0 such that V (2)(ρk + ε) <∞ and hence |V(2)n |(ρk + ε)n → 0. As

|Vn| = n[zn]U(z) ∼ akn−3/2ρ−nk



GRAPH LIMITS OF RANDOM UNLABELLED k-TREES 15

Figure 6. The first object V is a cycle-pointed unlabelled uncoloured 2-tree from

the set V(2)6 . The cycle-center (a hedron) is drawn in bold. (K, c) denotes one of the
cycle-pointed hedron-labelled (uncoloured) versions of V , and (Kcol, c) is one of the
front-coloured versions of (K, c). The last object (Kunl,col, c) is obtained by dropping
the labels of (Kcol, c).

for some fixed ak > 0 by Lemma 4.1 (or Equation (5.9) below), we know that |Vn|(ρk + ε/2)n →∞.
So

|V(2)n |
|Vn|

= o(1)

(
ρk + ε/2

ρk + ε

)n
tends exponentially fast to zero as n becomes large, as desired.

It remains to verify that V (2)(z) is analytic at z = ρk. Let V ∈ V(2)n be a cycle-pointed unlabelled
uncoloured k-tree whose cycle-center is a hedron. Then there is a hedron-labelled, uncoloured k-tree
K with an automorphism σ and a marked cycle c of σ such that (K, c) looks, up to relabelling, like
V . See Figure 6 for a running example in this proof.

We may view K as rooted at the cycle-center hedron. Hence K consists of a root hedron whose
fronts are identified with the root-fronts of k + 1 front-rooted k-trees C1, . . . , Ck+1. If σ sends the
label of a hedron contained in Ci to the label of a hedron contained in Cj , then it already holds that
the restriction of σ to the label set of Ci is an isomorphism from Ci to Cj . As the cycle center is
a hedron, it follows that there are branches Ci1 , . . . , Ci` (each having at least 1 hedron) with ` ≥ 2
such that σ cyclically permutes the label sets of the branches. That is, σ induces an isomorphism
from Cij to Cij+1 if 1 ≤ j < ` and to Ci1 if j = `.

Let Kcol denote any fixed front-coloured version of K (such that fronts of any hedron are coloured
from 1 to k+1 and fronts that are mirror to each other receive the same colour.) The automorphism
σ is not required to respect the colouring in the sense that σ.K = K, but we know that when we
relabel the hedra of Kcol according to σ, then the result σ.Kcol must be some coloured version of
K. Hence there is a bijection τ ∈ Sk+1 such that

σ.Kcol = τ.Kcol.

That is, the relabelled version σ.Kcol equals the recoloured version τ.Kcol. See Figure 6 for an
example of a cycle-pointed 2-tree (Kcol, c) with c = (13), where σ.Kcol = τ.Kcol holds for τ = (1)(23)
and σ = (13)(2)(46)(5).

Let A ∈ [n] be the label of the cycle-center hedron in Kcol and let B ∈ [n] be the label of some
hedron of Cij that is next to the cycle-center hedron. Then τ must map the colour aij ∈ [k + 1]
of the unique front contained in the hedra (corresponding to) A and B to the colour of the unique
front contained in the hedra (corresponding to) σ(A) = A and σ(B). Thus (ai1 , . . . , ai`) is one of
the disjoint cyclic factors of the permutation τ . As ` ≥ 2, this implies that τ does not have cycle
type 1k+1.
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Figure 7. The first object is a cycle-pointed unlabelled 2-tree V ∈ V(3),sym7 . The
cycle-center (a front) is drawn in bold. (K, c) denotes a hedron-labelled version
of V , and C∗ and C denote the marked and unmarked part of (K, c). Kcol is a
front-coloured version of K and Kunl,col is obtained by dropping the hedron-labels
of Kcol.

Let Kunl,col denote the result of dropping the labels of Kcol but retaining the colours. We
know that τ.Kcol = σ.Kcol is a relabelled version of Kcol, so Kunl,col is invariant under recolouring
according to the permutation τ . Thus V is formed by dropping the colours of Kunl,col and cycle-
pointing it in one of the at most n ways such that the cycle center is the root hedron. This shows
that

|V(2)n | ≤ n[zn]
∑
λ`k+1
λ 6=1k+1

Bλ(z) = [zn−1]
∑
λ`k+1
λ 6=1k+1

B′λ(z).(5.3)

By Lemma 4.1 and Equation (3.10) it follows that the series B′λ(z) has radius of convergence strictly

larger than ρk for all λ 6= 1k+1. This concludes the proof. �

5.3. Cycle-pointed k-trees with a front cycle-center. Treating this case will require us to
split it up into two subcases (see (5.4)).

Let V ∈ V(3)n be a cycle-pointed unlabelled uncoloured k-tree whose cycle-center is a front. Then
there is a hedron-labelled uncoloured k-tree K together with an automorphism σ and a marked
cycle c of σ such that V is the unlabelled version of (K, c).

We consider K as rooted at the cycle-center front. Hence K consists of a set of front-rooted
hedron-labelled uncoloured k-trees where the root-front is contained in a unique hedron. We may
decompose K into branches that contain hedra of the marked cycle c and branches that do not.
Thus K actually consists of two front-rooted components C∗ and C that are glued together at their
root-fronts, with C∗ the subgraph induced by all the branches containing hedra of the cycle c and C
the subgraph induced by the branches that do not. We call C∗ the marked part and C the unmarked
part of K. See Figure 7 for a running example.

If the automorphism σ sends the label of a hedron contained in a branch C1 of K to a label
of a hedron contained in another branch C2, then the restriction of σ to the label set of C1 is an
isomorphism from C1 to C2. In particular, σ can be restricted to an automorphism of C∗ and
consequently also to an automorphism of C.

Let us fix a version Kcol of K that is properly front-coloured such that fronts of any hedron are
coloured from 1 to k + 1 and fronts that are mirror to each other receive the same colour. We
additionally require that the root-front has colour k+1. We know that the result of relabelling Kcol

according to σ is a coloured version of K, where the root-front still has colour k+ 1. Consequently,
there is a bijection π ∈ Sk such that σ.Kcol = π.Kcol, that is, the relabelled version σ.Kcol equals
the recoloured version π.Kcol. Figure 7 illustrates an example, where c = (14) and σ.Kcol = π.Kcol

holds for π = (12)(3) and σ = (14)(23)(57)(6).

Let V(3),symn ⊂ V(3)n be the subset of all cycle-pointed k-trees where σ and π cannot be chosen in
such a way that π is the identity permutation. (This does not depend on the choice of Kcol.) See the

middle part of Figure 8 for an example of an element of V(3),sym7 . We set V(3),decn := V(3)n \ V(3),symn ,
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Figure 8. The 2-tree on the left is not cycle-pointed, since no automorphism has
the marked cycle as one of its disjoint cyclic factors. The other two are cycle-pointed

with a front as cycle-center. The middle one belongs to the class V(3),sym7 , while the

one on the right belongs to the class V(3),dec6 .

so that

V (3)(z) = V (3),sym(z) + V (3),dec(z)(5.4)

with V (3),sym(z) =
∑

n≥1 |V
(3),sym
n |zn and V (3),dec(z) =

∑
n≥1 |V

(3),dec
n |zn.

Our first observation tells us that V(3),symn contains very few elements:

Lemma 5.2. There are constants C, c > 0 that do not depend on n such that

|V(3),symn |
|Vn|

≤ C exp(−cn).(5.5)

Proof. Let Kunl,col denote the unlabelled and coloured k-tree obtained by dropping the labels but
retaining the colours of Kcol. As σ.Kcol = π.Kcol, it follows that Kunl,col is invariant under re-
colouring according to the permutation π. Since any unlabelled k-tree with n hedra has at most n
unlabelled cycle-pointed versions where the cycle-center is a front, it follows that

|V(3),symn | ≤ n[zn]
∑
µ`k
µ6=1k

Cµ(z) = [zn−1]
∑
µ`k
µ6=1k

C ′µ(z).(5.6)

By Lemma 4.1 we know that for each µ ` k with µ 6= 1k the series C ′µ(z) has radius of convergence

strictly larger than ρk. This implies that the generating series
∑

n≥1 |V
(3),sym
n |zn has radius of

convergence strictly larger than ρk. Inequality (5.5) now follows analogously as (5.3) in the proof
of Lemma 5.1. �

Now we turn to the complement set V(3),decn . For V ∈ V(3),decn , we may assume that the automor-
phism σ got chosen in a way that preserves the colouring of Kcol as well, that is, σ.Kcol = Kcol. We
argued above that the automorphism σ restricts to an automorphism of the marked part C∗ (and
to an automorphism of the unmarked part C). Consequently, at least one (and hence all) colourings
of the marked part admit a colour-preserving automorphism having the marked cycle c as one of its
disjoint cyclic factors.

This is a key observation: Arbitrary elements of V(3)n may have a marked part whose marked
cycle may only be extended to automorphisms involving some form of rotation of the root hedron
(that is, they are not colour preserving) such as the middle k-tree of Figure 8. This imposes
symmetry constraints (that is, invariance under non-trivial recolouring) on the unmarked part. For

this reason we could show in (5.6) that there are much less elements in V(3),symn than in V(3)n . For

elements of V(3),decn there are no such symmetry constraints. If the marked cycle may be extended
to an automorphism of the marked part C∗ that preserves a front-colouring, then C may be equal
to any front-rooted unlabelled k-tree such that the total number of hedra of C and C∗ sum up to n.
(The abbreviation “dec” for “decoupled” intends to indicate this.) In fact, we may always choose σ
in such a way that it pointwisely fixes all hedra of C. Note that, given a marked and an unmarked
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Figure 9. A cycle-pointed unlabelled 2-tree V ∈ V(3),dec6 , a cycle-pointed hedron-
labelled versionK of V , a front-coloured versionKcol ofK andKunl,col after dropping
the labels of Kcol, where the cycle-center (a front) is drawn in bold.

part, there is in general no canonical way to glue them together at the root-front. We will get to
this in a moment.

Let us first examine the constraints on the marked part. Since σ preserves the colouring, this
means that if we distinguish the vertices of the root-front of C∗ by ordering them linearly, then
C∗ consists of identical branches glued together in the unique way according to the order on the
root-front. See for example the cycle-pointed 2-tree (K, c) in Figure 9, where the branch containing

hedra 1 and 2 is identical to the branch containing 3 and 4 , while the branch containing 5

and 6 can be any front-rooted hedron-labelled 2-trees.
The automorphism σ cyclically permutes the label sets of the branches of C∗. Let C1, . . . , C`,

` ≥ 2 denote the branches of C∗ such that Ci is sent to Ci+1 by σ if i < `, and to C1 if i = `. The
disjoint cyclic factor of σ that corresponds to the marked cycle must be of the form

(a1,1, . . . , a1,`, a2,1, . . . , a2,`, . . . , ar,1, . . . , ar,`)

for some r ≥ 1 such that for each 1 ≤ j ≤ ` the labels a1,j , a2,j , . . . , ar,j correspond to distinct hedra

of the branch Cj . Note that the restriction of the power σ` to the label set of Cj is an automorphism
of Cj , and (aj,1, aj,2, . . . , aj,`) is one of its disjoint cyclic factors. Hence, up to hedron labels, C∗ is
completely determined by the number ` ≥ 2 of branches together with a single cycle-pointed branch
(Cj , (a1,j , a2,j , . . . , ar,j)). See Figure 10 for an illustration of how to construct a marked part in this
canonical way.

Note that not every marked part constructed in this way is admissible. By admissible we mean
that the marked part admits a front-colour preserving automorphism with the marked cycle as a
factor. For instance, the right one of Figure 10 is not admissible.

Let B̄(z) be the generating series so that [zn]B̄(z) counts the number of front-rooted unlabelled
uncoloured k-trees with n hedra where the root-front is contained in a unique hedron. Let B̄◦w(z)
count unlabelled uncoloured cycle-pointed branches that admit an automorphism that has the
marked cycle as one of its disjoint factors and preserves a given (and hence all) front-colourings.
(The “w” indicates that they are “well” pointed.) The generating series M(z) of the class M of

marked parts that are admissible for elements of the class V(3),dec =
⋃
n≥1 V

(3),dec
n is consequently

given by

M(z) =
∑
`≥2

B̄◦w(z`),

with the variable z indexing the number of hedra.
As mentioned before, there may be various ways to glue an unlabelled uncoloured marked part

and a front-rooted unlabelled uncoloured k-tree together at the root-front. In order to handle this,
we use colours.

Consider the set of all front-colourings ofM-objects such that the root-front receives colour k+1.
Note that each branch in a coloured M-object is coloured identically, as fronts that are mirror to
each other receive the same colour. Hence a coloured M-object is constructed out of copies of a
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Figure 10. Constructing a marked part with a cycle of length 8 out of 4 copies of
a single marked branch with a cycle of length 2.

single coloured B̄◦w-object. For each cycle type µ ` k let (B̄◦w)µ(z) denote the generating series
of the class of all colourings of B̄◦w-objects such that the root-front receives colour k + 1 and such
that the object is invariant under recolouring by a fixed permutation of degree k with cycle type µ.
Likewise, we let Mµ(z) count µ-invariant coloured M-objects. Then

Mµ(z) =
∑
`≥2

(B̄◦w)µ(z`).

Furthermore, we have the following substraction-free decomposition of V(3),dec:

Lemma 5.3. It holds that

V (3),dec(z) =
∑
µ`k

z−1µ Cµ(z)
∑
`≥2

(B̄◦w)µ(z`).(5.7)

For each µ ` k, the series Mµ(z) =
∑

`≥2(B̄
◦w)µ(z`) has radius of convergence strictly larger than ρk.

Proof. It is easy to see that (B̄◦w)µ(z) and B̄µ(z) have the same radius of convergence, because
any B̄µ-object with n hedra corresponds to at least 1 and at most nk! objects from (B̄◦w)µ. By
Lemma 4.1 it follows that Mµ(z) has radius of convergence strictly larger than ρk. Now, consider

the class of colourings of V(3),dec-objects where again the root-front is required to receive colour
k + 1. Applying Burnside’s Lemma (Lemma 3.1) yields (5.7).

�

5.4. Conclusion. The generating series we derived in Equations (5.2), (5.4), and (5.7) may be
summarized as follows:

Theorem 5.1. It holds that

zU ′(z) = B(z) + V (2)(z) + V (3),sym(z) +
∑
µ`k

z−1µ Cµ(z)
∑
`≥2

(B̄◦w)µ(z`).(5.8)

This is a substraction-free alternative to the dissymmetry equation [14, Lem. 6].
Note that, using (5.8), we are able to retrieve the asymptotic number of unlabelled k-trees with

n hedra (see (5.9)) which was proven in [7, Thm. 3] using a different approach.

Since the series V (2)(z), V (3),sym(z) and
∑

µ`k,µ6=1k z
−1
µ B̄µ(z)

∑
`≥2(B̄

◦w)µ(z`) have radius of con-

vergence strictly larger than ρk, and B̄1k(z) has a dominant singularity of square-root type at ρk,
we may apply Equations (3.9) and (4.1) together with general principles (for example [29, Lem.
3.2]) to deduce that

n[zn]U(z) ∼ (kρk)
−k

kk!

1 + k
∑
`≥2

(B̄◦w)1k(ρ`k)

 [zn]B̄1k+1(z).

In general the operations of cycle-pointing and colouring k-trees do not commute. However, colour-
ing “well” pointed k-trees is the same as cycle-pointing coloured k-trees. That is,

(B̄◦w)1k(z) = zB̄′1k(z).
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Note that there is an asymptotic expansion

[zn]B̄1k(z) ∼

√
1 + k

∑
`≥2 B̄

′
1k

(ρ`k)ρ
`
k

2πk2
n−3/2ρ−nk

that may be deduced from Equation (4.1) using [2, Thm. 28]. Hence

[zn]U(z) ∼ (kρk)
−k

k2k!
√

2π

1 + k
∑
`≥2

(B̄◦w)1k(ρ`k)

3/2

n−5/2ρ−nk .(5.9)

6. Proof of the main theorems

In order to sample an unlabelled k-tree with n hedra uniformly at random, we may uniformly
select a cycle-pointed k-tree from Vn and then forget about the marked cycle. The decomposition
in (5.1) allows us to divide the study of Vn into three cases, depending on the cycle-center. In the
following, we treat each part individually.

6.1. Hedron-rooted k-trees. As noted in Equation (5.2), V(1)-objects are exactly unlabelled un-
coloured hedron-rooted k-trees.

Lemma 6.1. Theorems 2.1, 2.2 and 2.3 hold for the uniform random unlabelled uncoloured hedron-
rooted k-tree with n hedra.

Proof. Recall that for any cycle type λ ` k + 1 we fixed a permutation πλ ∈ Sk+1 with type λ. By
Lemma 3.2 it follows that in order to uniformly sample an unlabelled hedron-marked k-tree with n
hedra we may proceed in two steps. First we draw a cycle type λ ` k+1 at random with probability
given by z−1λ ([zn]B(z))−1[zn]Bλ(z). In the second step we uniformly choose a front-coloured k-
tree with n hedra that is fixed by the permutation πλ. By Lemma 4.1 and Equation (3.10) the
cycle type is exponentially likely to be equal to 1k+1. The special case B1k+1(z) = zC1k(z)k+1 of
Equation (3.10) corresponds to the fact that any B1k+1-object may be constructed in a canonical
way by gluing the root-fronts of k+1 C1k -objects together to form a root-hedron. (See subsection 3.3

for details.) By Lemma 4.1 it holds that [zn]C1k(z) ∼ ρ−nk n−3/2c1k(1 + O(n−1)) for some constant
c1k > 0. Hence either by direct calculations or by applying more general principles of random
partitions [24, 29] it follows that the largest C1k -component in a random B1k+1-object of size n has
size n − O(1). By Lemma 4.2 it follows that the limits of Theorem 2.1 and Theorem 2.3 hold for
the largest C1k -component.

After rescaling edge-lengths by Θ(n−1/2), the small components glued to the giant C1k -component
contract to a single point. Hence, using the definition of the Gromov–Hausdorff–Prokhorov distance
in (2.1), it follows that the Gromov–Hausdorff–Prokhorov scaling limit for a random B1k+1-object
of size n is identical to the limit of its largest C1k -component. Similarly, a uniformly selected
vertex of a random B1k+1-object of size n lies with high probability in its largest C1k -component,
since the total number of vertices in the combined small components is stochastically bounded.
Moreover, for any fixed integer r ≥ 1 the r-neighbourhood of that random vertex does with high
probability not contain any of the vertices belonging to the root front. In fact, the Gromov–
Hausdorff–Prokhorov convergence of the giant component entails that its distance from the root
front has order

√
n. Hence, expressed in less technical terms, a myopic random vertex, that can

only see other vertices with distance at most r, observes with high probability only vertices from
the giant C1k -component. Using the characterization of Benjamini–Schramm convergence in (2.12),
it follows that the Benjamini–Schramm limit of a random B1k+1-object of size n is identical to the
Benjamini–Schramm limit of its largest C1k -component. We have thus verified that the limits of
Theorem 2.1 and Theorem 2.3 both hold for random B1k+1-object of size n as n tends to infinity.

Since the cycle type in our sampling procedure is with high probability equal to 1k+1, it follows
that the limits of Theorem 2.1 and Theorem 2.3 both hold for random hedron-rooted unlabelled
k-trees, with the scaling constant of the scaling limit being equal to those for the case of unlabelled
k-trees rooted at a front of distinguishable vertices.
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It remains to prove the tail-bound for the diameter. By Lemma 4.2 there are constants C, c > 0
such that the probability for the k-tree diameter of a C1k -object of size n to be larger than x ≥ 0 is
bounded uniformly by C exp(−cx2/n). An n-sized B1k+1-object consists of k+1 components whose
sizes (number of hedra) n1, . . . , nk+1 sum up to n− 1, since none of them contains the root hedron.
Let Bn be a uniformly selected unlabelled, hedron-rooted and front-coloured k-tree with n vertices
and let C1(Bn), . . . , Ck+1(Bn) denote its components. If Bn has diameter at least x, then at least
one of its components has diameter at least x/2. Letting |Ci(Bn)| denote the number of hedra in
the component Ci(Bn), it follows that

P(D(Bn) ≥ x) ≤
∑

n1+···+nk+1=n−1
P(|Ci(Bn)| = ni, i = 1, . . . , k + 1)

k+1∑
i=1

C exp(−cx2/(4ni))

≤ C(k + 1) exp(−cx2/(4n)).

We argued above that the total variation distance of uniform random coloured and uniform
random uncoloured hedron-rooted k-trees (that is, B1k+1-objects and B-objects) with n vertices is
exponentially small (as the partition type we considered is exponentially likely to be equal to 1k+1).
It follows that the tail-bound for the diameter in Theorem 2.2 holds for the random unlabelled
uncoloured hedron-rooted k-tree with n hedra. This concludes the proof. �

6.2. Cycle-pointed k-trees with a hedron cycle-center. Lemma 5.1 readily implies that we
can safely neglect the case of a hedron cycle-center.

Lemma 6.2. A uniformly selected cycle-pointed k-tree from the class Vn is exponentially unlikely
to have a hedron as the cycle-center.

6.3. Cycle-pointed k-trees with a front cycle-center. Recall that we split the class V(3) into
V(3),sym and V(3),dec. Lemma 5.2 and the enumerative observations in Section 5.4 readily entail that
we may safely neglect the class V(3),sym:

Lemma 6.3. A uniformly selected cycle-pointed k-tree from the class V(3)n is exponentially unlikely

to belong to V(3),symn .

It remains to prove the main theorems for random elements from V(3),decn .

Lemma 6.4. Theorems 2.1, 2.2 and 2.3 hold for the uniformly selected cycle-pointed k-tree from

the class V(3),decn .

Proof. Recall the substraction-free decomposition given in Equation (5.7). Using Lemma 4.1 and
Lemma 5.3 it follows that all summands with µ 6= 1k have radius of convergence strictly larger
than ρk. The summand for µ = 1k represents pairs of a C1k -object (that bijectively corresponds to
an unlabelled uncoloured k-tree rooted at a front of distinguishable vertices, see Section 4) and an
M1k -object, that are glued together in a canonical way. It follows from Lemma 3.2 that there are

constants C, c > 0 such that the total variation distance between the uniform measure on V(3)n and
the uniform measure on n-hedron unlabelled, uncoloured, cycle-pointed k-trees obtained from (C1k ,
M1k)-pairs is bounded by C exp(−cn) for all n. Since M1k(z) has radius of convergence strictly
larger than ρk, it follows easily from the asymptotic expansion of [zn]C1k(z) (both the dominant
term and the second order term) that the marked part has stochastically bounded size as n becomes
large.

Arguing analogously as in the proof of Lemma 6.1, it follows from Lemma 4.2 that Theo-

rems 2.1, 2.2 and 2.3 hold for the uniformly selected cycle-pointed k-tree from the class V(3),decn . �

6.4. Proof of Theorems 2.1, 2.2 and 2.3. Suppose that we uniformly select a cycle-pointed k-

tree Vn from Vn. Lemma 6.2 entails that Vn is exponentially unlikely to belong to V(2)n . Lemma 6.1
entails that Theorems 2.1, 2.2 and 2.3 hold for the random graph obtained by conditioning Vn to

belong to V(1)n . Lemma 6.3 and Lemma 6.4 entail that this is also the case when Vn is conditioned
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to belong to V(3)n . As Un is obtained from Vn by forgetting about the marked cycle, this proves
Theorems 2.1, 2.2 and 2.3.
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