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Abstract. It is well known since the seminal work by Bousquet-Mélou, Claesson, Dukes
and Kitaev (2010) that certain refinements of the ascent sequences with respect to several
natural statistics are in bijection with corresponding refinements of (2 + 2)-free posets and
permutations that avoid a bi-vincular pattern. Different multiply-refined enumerations of as-
cent sequences and other bijectively equivalent structures have subsequently been extensively
studied by various authors.

In this paper, our main contributions are
• a bijective proof of a bi-symmetric septuple equidistribution of Euler–Stirling statistics

on ascent sequences, involving the number of ascents (asc), the number of repeated
entries (rep), the number of zeros (zero), the number of maximal entries (max), the
number of right-to-left minima (rmin) and two auxiliary statistics;

• a new transformation formula for non-terminating basic hypergeometric 4φ3 series ex-
panded as an analytic function in base q around q = 1, which is utilized to prove two
(bi)-symmetric quadruple equidistributions on ascent sequences.

A by-product of our findings includes the affirmation of a conjecture about the bi-symmetric
equidistribution between the quadruples of Euler–Stirling statistics (asc, rep, zero,max) and
(rep, asc,max, zero) on ascent sequences, that was motivated by a double Eulerian equidistri-
bution due to Foata (1977).
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1. Introduction and main results

In the seminal paper [4] by Bousquet-Mélou, Claesson, Dukes and Kitaev, ascent sequences
were introduced, as they are in bijection with several different combinatorial structures such as
(2 + 2)-free posets, certain bivincular pattern-avoiding permutations, Stoimenow’s involution
and regular linearized chord diagrams [26, 27]. Several natural statistics on posets, permu-
tations and sequences are also kept track of by a sequence of bijections established by these
authors. Since then, various joint distributions of classical statistics on ascent sequences and
many other bijectively equivalent structures including Fishburn matrices [10, 11] and (2− 1)-
avoiding inversion sequences have been intensively explored [7, 8, 9, 19, 20, 21, 22, 23].

Recently in [13], a new decomposition of ascent sequences was discovered, which contributes
to a systematic study of Eulerian and Stirling statistics on ascent sequences, certain pattern-
avoiding permutations and (2− 1)-avoiding inversion sequences. In particular, their work led
to conjecture the bi-symmetry of a quadruple Euler–Stirling statistics on ascent sequences
(see Conjecture 1) that is motivated by a double Eulerian equidistribution due to Foata [12].
However, it appears that the use of the new decomposition from [13] is not sufficient to prove
the bi-symmetry conjecture.

In the present paper, we affirm this conjecture in two different ways: one by developing
a second new decomposition of ascent sequences; and the other one by identifying the gen-
erating function of the quadruple statistics as a basic hypergeometric series to which a new
transformation formula (that is derived in this paper) is applied. Let us start with some
necessary definitions and then state the consequences of our results.

An inversion sequence (s1, s2, . . . , sn) is a sequence of non-negative integers such that for
all i, 0 ≤ si < i. We denote by In the set of inversion sequences of length n, which is in
one-to-one correspondence with the set Sn of permutations of [n] := {1, 2, . . . , n} via the well
known Lehmer code σ (see for instance [12, 24]). That is, for π = π1π2 · · ·πn ∈ Sn, the map
σ : Sn → In is defined as

σ(π) = (s1, s2, . . . , sn), where si := |{j : j < i and πj > πi}|.
Some restrictions set up on permutations and inversion sequences could produce new sets of
equal cardinality, but not necessarily through the Lehmer code. For instance, ascent sequences
and ( )-avoiding permutations (defined as below) are equinumerous.

Definition 1 (Ascent sequence). For any sequence s ∈ In, let

asc(s) := |{i ∈ [n− 1] : si < si+1}| (1.1)

be the number of ascents of s. An inversion sequence s ∈ In is an ascent sequence if for all
2 ≤ i ≤ n, the si satisfy

si ≤ asc(s1, s2, . . . , si−1) + 1.

Definition 2 (( )-avoiding permutation). We say that a permutation π ∈ Sn avoids the

pattern if there is no subsequence πiπi+1πj of π satisfying both πi−1 = πj and πi < πi+1.

Otherwise we say π contains the pattern . Sometimes the pattern is written as 2|31̄.
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The ( )-avoiding permutations, more generally, permutations that avoid a specific bivin-
cular pattern, were introduced and studied by Bousquet-Mélou, Claesson, Dukes and Kitaev
[4] as both of them are surprisingly in bijection with other classical combinatorial structures
such as (2 + 2)-free posets [10, 11] and regular linearized chord diagrams [26, 27].

Let An and Sn( ) be the sets respectively of ascent sequences and ( )-avoiding per-
mutations of length n. Bousquet-Mélou, Claesson, Dukes and Kitaev [4] proved that

|An| =
∣∣∣Sn( )

∣∣∣ = [tn]

∞∑
k=1

k∏
i=1

(1− (1− t)i), (1.2)

and thus, as a consequence of a result by Zagier [27] (who discovered that the series on the
right-hand side of (1.2) is the generating functions of the Fishburn numbers), |An| is equal
to the n-th Fishburn number (see A022493 of the OEIS [25]). Their first explicit values are
given as

(|An|)n≥1 = (1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, . . .),

for which no closed form is known. The study of Fishburn numbers and their generalizations
has remarkably led to many interesting results, including congruences [2, 15], asymptotic
formulas [5, 17, 18, 27], intriguing connections to transformations of hypergeometric series
[1], modular forms [5, 27] and a variety of bijections [7, 8, 9, 19, 20, 21, 22, 23]. In partic-
ular, various members of the Fishburn family can be viewed as supersets of corresponding
members of the Catalan family. Here the Fishburn (resp. Catalan) family refers to classes of
combinatorial objects enumerated by the Fishburn (resp. Catalan) numbers.

This paper is devoted to new bijective and basic hypergeometric aspects of Fishburn struc-
tures, for which we review some classical statistics on ascent sequences and ( )-avoiding
permutations. For any sequence s ∈ In, asc(s) is defined in (1.1). Let

rep(s) := n− |{s1, s2, . . . , sn}|,
zero(s) := |{i ∈ [n] : si = 0}|,
max(s) := |{i ∈ [n] : si = i− 1}|, and

rmin(s) := |{si : si < sj for all j > i}|,

be the respective numbers of repeated entries, zeros, maximal entries (or maximals for short)
and right-to-left minima of s. For instance, when s = (0, 1, 2, 0, 1, 3, 5) ∈ I7, then asc(s) = 5,
rep(s) = 2, zero(s) = 2, max(s) = 3 and rmin(s) = 4. For any permutation π ∈ Sn, let

des(π) := |{i ∈ [n− 1] : πi > πi+1}|,
iasc(π) := asc(π−1) = |{i ∈ [n− 1] : πi + 1 appears to the right of πi}|,

be the number of desents and inverse ascents of π, respectively. Similar to rmin, the statistics
lmin, lmax and rmax represent the numbers of left-to-right minima, left-to-right maxima and
right-to-left maxima, respectively.

Previous bijections developed in [4, 9, 13] preserve natural statistics on posets, permu-
tations, sequences and matrices. As examples, we list below five pairs of equidistributed
statistics that were established in those papers.

(asc, zero) on ascent sequences
1−1←−→ (des, lmax) on ( )-avoiding permutations,

1−1←−→ (mag − 1,min) on (2 + 2)-free posets,
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1−1←−→ (dim− 1, rowsum1) on Fishburn matrices,

1−1←−→ (rep,max) on (2− 1)-avoiding inversion sequences.

Remark 1. The statistics mag, min are abbreviations for magnitude and the number of
minimal elements of a poset; the statistics dim and rowsum1 refer to dimension and the sum
of entries in the first row of a matrix.

In a recent paper [13], a joint symmetric distribution of statistics asc and rep over ascent
sequences was discovered. The motivation came from a symmetric distribution of (asc, rep)
on inversion sequences ∑

s∈In

uasc(s)xrep(s) =
∑
s∈In

urep(s)xasc(s). (1.3)

This is a direct consequence of a double Eulerian equidistribution due to Foata [12]:∑
s∈In

uasc(s)xrep(s) =
∑
π∈Sn

udes(π)xiasc(π). (1.4)

It turns out that not only (1.3) and (1.4) are true if In and Sn are replaced by the correspond-

ing subsets An and Sn( ), but an even stronger result on a bi-symmetric equidistribution
of Euler–Stirling statistics 1 over ascent sequences was conjectured.

Conjecture 1. [13] For each n ≥ 1, the following bi-symmetric quadruple equidistribution
holds: ∑

s∈An

uasc(s)xrep(s)zzero(s)ymax(s) =
∑
s∈An

urep(s)xasc(s)zmax(s)yzero(s).

Remark 2. Conjecture 1 is equivalent to a bi-symmetric equidistribution between the quadru-
ples (des, iasc, lmax, lmin) and (iasc, des, lmin, lmax) on ( )-avoiding permutations, according
to Theorem 12 of [13].

Two results in approaching this conjecture were presented in [13]: one is a generating
function formula of ascent sequences with respect to the statistics asc, rep, zero,max (see The-
orem 2); and the other one is a quadruple equidistribution between (asc, rep, zero,max) and
(rep, asc, rmin, zero) on ascent sequences (see Theorem 3).

Let G(t;x, y, u, z) denote the generating function of ascent sequences counted by the length
(variable t), asc (variable u), rep (variable x), max (variable y) and zero (variable z). That is,

G(t;x, y, u, z) :=
∞∑
n=1

tn
∑
s∈An

xrep(s)ymax(s)uasc(s)zzero(s). (1.5)

Theorem 2. [13] The generating function G(t;x, y, u, z) of ascent sequences is

G(t;x, y, u, z) =

∞∑
m=0

zyrxm(1− yr)(1− r)m(x+ u− xu)

[x(1− u) + u(1− yr)(1− r)m][x+ u(1− x)(1− yr)(1− r)m]

1We adopt the classification of statistics from [13]: any statistic whose distribution over a member of the
Fishburn family equals the distribution of asc (resp. zero) on ascent sequences is called an Eulerian (resp. a
Stirling) statistic. So according to Theorem 3, asc, rep are Eulerian statistics and zero,max, rmin are Stirling
statistics.
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×
m−1∏
i=0

1 + (zr − 1)(1− yr)(1− r)i

x+ u(1− x)(1− yr)(1− r)i
, (1.6)

where r = t (x+ u− xu).

Theorem 3. [13] There is a bijection Υ : An → An which transforms the quadruple

(asc, rep, zero,max) to (rep, asc, rmin, zero).

Conjecture 1 can be settled, with the help of Theorems 2 and 3, by showing either (I) or
(II), described as follows.

(I) G(t;x, y, u, z) = G(t;u, z, x, y);
(II) the quadruple (asc, rep, zero,max) has the same distribution as (asc, rep, zero, rmin)

over ascent sequences.

In this paper, we settle Conjecture 1 independently in both ways, (I) and (II).
Our first main result (Theorem 4) is a bijective proof of a bi-symmetric septuple equidis-

tribution on ascent sequences, which significantly generalizes (II) and consequently affirms
Conjecture 1.

Theorem 4. There is a bijection Φ : An → An such that for all s ∈ An,

(asc, rep, zero,max, ealm, rmin, rpos)s = (asc, rep, zero, rmin, rpos,max, ealm)Φ(s). (1.7)

We postpone the definitions of the two auxiliary statistics ealm, rpos to Sections 3 and 4.
The main idea to prove Theorem 4 relies on two parallel decompositions of ascent sequences
that are in close relation to the two respective auxiliary statistics ealm and rpos. The former
decomposition was discovered in [13]. However, using this decomposition alone appears to be
not enough to prove Conjecture 1, which motivates us to develop the latter new decomposition
in this paper, providing a crucial piece of the puzzle solved here.

Our second main result (Theorem 5) is a new transformation formula of non-terminating
basic hypergeometric 4φ3 series, valid as an identity expanded in base q = 1 − r around
q = 1, or, equivalently, r = 0. We define αφβ series before stating Theorem 5. Other relevant
definitions, in particular, for the q-shifted factorials and their products (see (7.1) and (7.2))
are deferred to Section 7 to keep the exposition short. An αφβ basic hypergeometric series
with α upper parameters a1, . . . , aα, and β lower parameter b1, . . . , bβ, base q and argument
z is defined as

αφβ

[
a1, . . . , aα
b1, . . . , bβ

; q, z

]
:=

∞∑
k=0

(a1, . . . , aα; q)k
(q, b1, . . . , bβ; q)k

(
(−1)kq(

k
2)
)1+β−α

zk. (1.8)

Theorem 5. Let a, b, c, d, e, r be complex variables, j be a non-negative integer. Then, as-
suming that none of the denominator factors in (1.9) have vanishing constant term in r, we
have the following transformation of convergent power series in a and r:

4φ3

[
(1− r)j , 1− a, b, c

d, e, (1− r)j+1(1− a)bc/de
; 1− r, 1− r

]
=

((1− r)/e, (1− r)(1− a)bc/de; 1− r)j
((1− r)(1− a)/e, (1− r)bc/de; 1− r)j

× 4φ3

[
(1− r)j , 1− a, d/b, d/c

d, de/bc, (1− r)j+1(1− a)/e
; 1− r, 1− r

]
. (1.9)
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We utilize special cases of Theorem 5 to give analytic proofs of two different quadruple
(bi)-symmetric equidistributions of Euler–Stirling statistics on ascent sequences, collected in
Theorem 6. The first application of Theorem 5 is a proof of (I) by making use of the explicit
form of the generating function in Theorem 2, and thus constitutes a non-combinatorial proof
of the bi-symmetric equidistribution in Conjecture 1, while the second application establishes
a symmetric equidistribution by employing a new explicit generating function obtained by a
refined recursive construction of ascent sequences from [13].

Theorem 6. For the generating function defined in (1.5), we have the bi-symmetry

G(t;x, y, u, z) = G(t;u, z, x, y). (1.10)

Furthermore, define

G(t;x, y, u, v) :=

∞∑
n=1

tn
∑
s∈An

xrep(s)ymax(s)uasc(s)vrmin(s), (1.11)

then we have, with r = t(x+ u− xu),

G(t;x, y, u, v) =
vyt

1− vytu
+
∞∑
m=0

rv(1− yr)(1− r)m

(x− xu+ u(1− yr)(1− r)m)(1− tuvy)

×
m∏
i=0

x(1− (1− yr)(1− r)i)(x− xu+ u(1− yr)(1− r)i)
(x− u(x− 1)(1− yr)(1− r)i)(x− xu+ u(1− rv)(1− yr)(1− r)i)

, (1.12)

and the symmetry
G(t;x, y, u, v) = G(t;x, v, u, y), (1.13)

Remark 3. In the language of bijections, the (bi)-symmetric equidistributions in Theorem 6
mean that for any ascent sequence s ∈ An,

(asc, rep, zero,max)s = (rep, asc,max, zero)Υ−1(Φ(s)),

(asc, rep,max, rmin)s = (asc, rep, rmin,max)Φ(s),

(asc, rep, zero, rmin)s = (rep, asc, rmin, zero)Υ(Φ(s)),

where Υ and Φ are the bijections respectively in Theorems 3 and 4.

Remark 4. We are not the first ones to study equivalent forms for generating functions of ob-
jects of the Fishburn family using tools from basic hypergeometric series. Initiating with work
of Zagier [27] who established the basic hypergeometric series in (1.2) as a concrete form of
the generating function G(t; 1, 1, 1, 1) for the Fishburn numbers, Andrews and Jeĺınek [1] sub-
sequently proved three equivalent forms of G(t; 1, 1, 1, z) by applying the Rogers–Fine identity.
However, to the best of our knowledge, no algebraic or analytic arguments to determine equiv-
alent forms of the generating functions G(t;x, y, u, z) or G(t;x, y, u, v) were known, not even,
say, for the special case G(t; 1, 1, u, z). Our analytic proofs of G(t;x, y, u, z) = G(t;u, z, x, y)
and G(t;x, y, u, v) = G(t;x, v, u, y) strengthen the already known existing ties between (re-
fined) generating functions of objects of the Fishburn family with basic hypergeometric series
that are expanded in base q = 1− r around r = 0. At the same time it demonstrates the ben-
efit of having equivalent forms of generating functions, and the power of basic hypergeometric
machinery.

All aforementioned (bi)-symmetric distributions on ascent sequences have counterparts over
other members of the Fishburn family.
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Corollary 7. There are three bijections between Sn( ) and itself such that the following
three (bi)-symmetric equidistributions hold, respectively:

(des, iasc, lmax, lmin, rmax)π = (des, iasc, lmax, rmax, lmin)(Ψ−1 ◦ Φ ◦Ψ)(π),

(des, iasc, lmax, lmin)π = (iasc, des, lmin, lmax)(Ψ−1 ◦Υ−1 ◦ Φ ◦Ψ)(π),

(des, iasc, lmax, rmax)π = (iasc, des, rmax, lmax)(Ψ−1 ◦Υ ◦ Φ ◦Ψ)(π),

where Υ,Φ are the bijections respectively in Theorems 3 and 4, and Ψ : Sn( )→ An is the
bijection from Theorem 12 of [13].

Let us recall the definition of Fishburn matrices and associated three Stirling statistics.
Any cell (i, j) of a matrix M is called a weakly north-east cell if Mi,j 6= 0 and Ms,t = 0 for

all other s ≤ i and t ≥ j. A matrix is a Fishburn matrix if all of its entries are non-negative
integers such that neither row nor column contains only zero entries. Let Fn be the set of
Fishburn matrices whose sum of entries equals n, then for any M ∈ Fn, let

rowsum1(M) := the sum of entries in the first row of M,

ne(M) := the number of weakly north-east cells of M,

mtr(M) := the largest index i with 1 ≤ i ≤ dim(M) for which the submatrix

(Ms,t)s≤i−1,t≤i−1 is an empty or an identity matrix.

The first two statistics and the statistic

tr(M) := the number of non-zero Mi,i for all 1 ≤ i ≤ dim(M)

were studied in [6, 20]. Clearly mtr(M) ≤ tr(M) holds for any Fishburn matrix M and the
statistic mtr (short name for modified trace) is introduced because of a bijection established
by Chen, Yan and Zhou in [6, Theorem 16]: There is a bijection φ : An → Fn with the
property

(zero, rmin,maxasc)s = (rowsum1, ne, tr)φ(s),

where maxasc(s) := |{i ∈ [1, n] : si = asc(s1, . . . , si−1) + 1}| counts the number of maximal
ascents. Through the bijection φ, it is not hard to find that

(zero, rmin,max)s = (rowsum1, ne,mtr)φ(s).

Consequently, it follows directly from Theorem 4 that

Corollary 8. There is a bijection between Fn and itself such that the following symmetric
distribution holds:

(rowsum1, ne,mtr)M = (rowsum1,mtr, ne)(φ ◦ Φ ◦ φ−1)M,

where Φ is the bijection in Theorem 4 and φ : An → Fn is given in [6, Theorem 16].

Remark 5. The three Stirling statistics rowsum1, ne,mtr are pairwise symmetric on Fn. The
fact that the pair (ne,mtr) is symmetric on Fn is a direct consequence of Corollary 8 and it
is known from [6, 13, 20] that the other two pairs (rowsum1, ne) and (rowsum1,mtr) are also
symmetric.

Interestingly, the concept of maximal ascents also appears in the new decomposition of
ascent sequences; see Definition 5 and Section 3.
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The paper is organized as follows. We provide in the next section a brief road map of the
sophisticated bijective proof of Theorem 4. Two key ingredients of the proof, including a new
decomposition of ascent sequences and a sequence of transformations on ascent sequences,
are presented in Sections 3 and 4. In Section 5 we complete the proof of Theorem 4 and put
technical proofs of some lemmas and propositions in Section 8. A refined generating function
of ascent sequences is derived in Section 6 and its amenability to transformations of basic
hypergeometric series is demonstrated in Section 7. We end the paper in Section 9 with some
final remarks; in particular we pose an open problem there and state a conjecture.

2. Road map of the bijective proof

The purpose of this section is to present a brief idea of the proof of Theorem 4. Some
related definitions will be postponed to Sections 3 to 4.

For the trivial case s = (0, 1, 2, . . . , |s| − 1), it is easily seen that Φ(s) = s satisfies (1.7), so
it suffices to prove Theorem 4 for the remaining ascent sequences. Let A∗ denote the set of
ascent sequences except s = (0, 1, 2, . . . , |s| − 1).

In the first step, we describe a new partition of A∗ into five disjoint subsets denoted by Ti
for 1 ≤ i ≤ 5 in Section 3. Subsequently we review a different partition of A∗ into five subsets
from [13]. These subsets are denoted by Di for 1 ≤ i ≤ 5 and will be defined in Section 5.

In the second step, we establish a bijection

Φ : Di ∩An → Ti ∩An, (2.1)

that satisfies (1.7) for every i (1 ≤ i ≤ 5) in order to prove Theorem 4. The bijection Φ is
defined recursively, starting with the simplest one between D1 ∩ An and T1 ∩ An, and then
using induction to construct more difficult ones for other subsets that can be transformed
into simpler subsets for which the bijection is already known.

More precisely, we begin with the bijection Φ in (2.1) for the simplest case i = 1. That is,

Φ : {s ∈ An : |s| −max(s) = 1} → {s ∈ An : |s| − rmin(s) = 1} (2.2)

is explicitly defined, which forms an inductive basis to construct Φ for other subsets of ascent
sequences s with larger value of |s| −max(s) or |s| − rmin(s).

For each i ∈ {2, 3, 4}, a bijection that maps Di ∩ An (resp. Ti ∩ An) to a subset of ascent
sequences with reduced value of |s| − max(s) (resp. |s| − rmin(s)) is described in Section 4
(resp. Section 5). These bijections combined with the basis (2.2) enable us to recursively
define Φ between the subsets Di ∩An and Ti ∩An for i ∈ {2, 3, 4}.

For i = 5, the construction of Φ instead employs the already defined bijection Φ : D4∩An →
T4∩An and a bijection that transforms D5∩An (resp. T5∩An) into a subset of ascent sequences
with smaller max(s)− ealm(s) (resp. rmin(s)− rpos(s)). It proceeds as follows: We prove in
Lemma 18 and Proposition 13 the following two bijections:

h5 : D5 ∩An → (D3∪̇D4∪̇D5) ∩ {s ∈ An : ealm(s) 6= 0} ,
f5 : T5 ∩An → (T3∪̇T4∪̇T5) ∩ {s ∈ An : rpos(s) 6= 0} .

Through these two bijections the values of max(s)−ealm(s) and rmin(s)−rpos(s) are decreased
by one, respectively. In particular,

h5 : {s ∈ D5 ∩An : max(s)− ealm(s) = 2} → {s ∈ D4 ∩An : ealm(s) 6= 0} ,
f5 : {s ∈ T5 ∩An : rmin(s)− rpos(s) = 2} → {s ∈ T4 ∩An : rpos(s) 6= 0} .
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Using then the already known bijection Φ : D4∩An → T4∩An as a basis to recursively define
Φ = f−15 ◦Φ◦h5 yields the desired bijection between D5∩An and T5∩An. This will complete
the bijective proof of Theorem 4.

3. A new decomposition of ascent sequences

The new decomposition is largely inspired by the new auxiliary statistic rpos, which together
with some relevant statistics will be defined as follows.

• Let Rmin be the corresponding set-valued statistic of rmin, that is, for any s ∈ In,

Rmin(s) = {si : si < sj for all j > i}.
For convenience, we index all right-to-left minima from left to right starting from 0
(rather than from 1). That is, right-to-left minima of s are indexed by 0, 1, . . . , rmin(s)−
1 from left to right. Let Rmin(s)j denote the j-th smallest element of Rmin(s) where
0 ≤ j < rmin(s).
• Let Prm(s)j be the j-th smallest element of Prm(s), where 0 ≤ j < rmin(s) and

Prm(s) := {i : si is a right-to-left minimum of s}
is the set of positions of right-to-left minima of s = (s1, s2, . . . , s|s|).

Definition 3 (statistics rpos). For any ascent sequence s with rmin(s) 6= |s|, define rpos(s) =
m if m is the maximal index such that the m-th right-to-left minimum appears at least twice
after the (m−1)-th right-to-left minimum. If no such m exists or rmin(s) = |s|, set rpos(s) = 0.

For example, rpos(0,0, 1, 2, 3, 4) = 0 and rpos(0, 0, 1, 2, 0, 1, 2, 1,3,3, 4) = 2.

Definition 4 (statistics sebr). Given any ascent sequence s ∈ A∗, define sebr(s) to be the
smallest entry between the two rightmost entries Rmin(s)rpos(s), and assume sebr(s) = 0 if
the two rightmost entries Rmin(s)rpos(s) are next to each other.

For example, let s = (0, 0, 1, 2, 0, 1, 2, 1,3, 4, 5,3, 4), then rpos(s) = 2, Rmin(s)2 = 3 and
sebr(s) = 4 where the two rightmost entries 3 are in bold.

Let

T1 := {s ∈ A∗ : |s| = rmin(s) + 1},
T2 := {s ∈ A∗ − T1 : sebr(s) = 0}.

Then the complement of T1∪̇T2 in A∗ contains all ascent sequences s ∈ A∗−T1 with sebr(s) 6=
0. We next divide the remaining set A∗ − T1∪̇T2 into the following two disjoint subsets A1

and A2 by comparing sebr(s) and Rmin(s)rpos(s)+1. When rpos(s) = rmin(s) − 1, we assume
that sebr(s) < Rmin(s)rpos(s)+1. Define

A1 := {s ∈ A∗ − T1 : sebr(s) ≥ Rmin(s)rpos(s)+1},
A2 := {s ∈ A∗ − T1 : 0 6= sebr(s) < Rmin(s)rpos(s)+1}.

Now we refine the sets A1 and A2 through the concept of maximal ascents:

Definition 5. (Masc) For any s = (s1, s2, . . . , sn) ∈ In, we say that si is a Maximal ascent
(Masc) of s if

si = asc(s1, s2, . . . , si−1) + 1.

In particular, the last entry sn of s is an Masc if sn−1 < sn = asc(s). All maximal entries are
Masc’s. For instance, given s = (0,1,2, 0,3, 2), the entries in bold are all Masc’s of s.
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Set (see also Figure 3.1)

T3 := {s ∈ A1 : sebr(s) = Rmin(s)rpos(s)+1,Prm(s)rpos(s)+1 = Prm(s)rpos(s) + 1.

and no Masc appears after the position Prm(s)rpos(s)}.
T4 := {s ∈ A2 : s|s| is not an Masc}.
T5 := (A1 − T3) ∪̇ (A2 − T4).

Thus A∗ is the disjoint union of subsets Ti for 1 ≤ i ≤ 5.
For example, let s = (0, 0, 1, 2, 0, 1, 2, 1, 3, 4, 5, 3, 4). Then rpos(s) = 2 and s ∈ T3 because

sebr(s) = Rmin(s)3 = 4, Prm(s)2 + 1 = Prm(s)3 = 13 and no Masc appears after the 12-th
entry. Let s = (0, 0, 1, 2, 0, 1, 2, 1, 3, 4, 5, 3, 5). Then s ∈ T4 because sebr(s) = 4 < Rmin(s)3 =
5 and the last entry is not an Masc.

xi xi

T3:
xi+1�= ∅

min= xi+1

xp−1

no Masc

xi xi

T4:
xi+1�= ∅

min< xi+1

xp−1

not Masc

Figure 3.1. Two subsets of ascent sequences s ∈ A∗ with rpos(s) = i and
rmin(s) = p, where xi = Rmin(s)i denotes the i-th right-to-left minimum of
s; black dots and squares represent the rightmost and the second rightmost
entry respectively.

4. A sequence of bijections on ascent sequences

In this section, we present a sequence of bijections that map each Ti for 1 ≤ i ≤ 5 to a
subset of ascent sequences s either with smaller |s|− rmin(s) or with smaller rmin(s)− rpos(s).

Let us recall the statistic ealm introduced in [13]:

Definition 6 (statistic ealm). Let s be an ascent sequence with max(s) 6= |s|. Then ealm(s) =
smax(s)+1, i.e., the entry right after the last maximal. For the ascent sequence s = (0, 1, . . . , |s|−
1) that has max(s) = |s|, we set ealm(s) = 0.

For example, ealm(0, 1,0, 1, 3, 0, 2) = 0.

Throughout the paper, define χ(a) = 1 if the statement a is true; and χ(a) = 0 otherwise.

Lemma 9. There is a bijection

f2 : T2 ∩An → {(i, s) : s ∈ A∗ ∩An−1, rpos(s) ≤ i < rmin(s)}
that sends s to a pair f2(s) = (rpos(s), s∗) satisfying

(asc,max, ealm, rmin)s = (asc,max, ealm, rmin)s∗,

zero(s) = zero(s∗) + χ(rpos(s) = 0), and rep(s) = rep(s∗) + 1.

Proof. For any ascent sequence s ∈ T2 with rpos(s) = i < rmin(s), the two rightmost Rmin(s)i
are next to each other. Removing one of them leads to an ascent sequence s∗ ∈ A∗ with
rpos(s∗) ≤ i. We set f2(s) = (rpos(s), s∗) and it is easily seen that f2 is a bijection satisfying
|s∗| = |s| − 1, asc(s∗) = asc(s), rep(s∗) = rep(s) − 1, zero(s∗) = zero(s) − χ(rpos(s) = 0),
max(s∗) = max(s), ealm(s∗) = ealm(s) and rmin(s∗) = rmin(s). �

Example 1. For s = (0, 0, 1, 2, 0, 1, 2, 1,3,3, 4), according to Lemma 9, f2(s) = (2, s∗) where
s∗ = (0, 0, 1, 2, 0,1, 2,1, 3, 4) is an ascent sequence with rpos(s∗) = 1.
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Let P1 be the set of ascent sequences s ∈ A∗ whose last entry is an Masc, that is, s|s|−1 <
s|s| = asc(s). Denote by Pc1 the complement of P1 in A∗.

Lemma 10. There is a bijection

φ1 : An ∩ P1 → An−1 ∩A∗

that transforms the septuple

(asc, rep, zero,max, ealm, rmin, rpos) to (asc + 1, rep, zero,max, ealm, rmin + 1, rpos).

Proof. For any ascent sequence s ∈ P1, remove the last entry and define the resulting sequence
as φ1(s). It is easy to examine the corresponding statistics. �

Lemma 11. There is a bijection

f3 : T3 ∩An → {s ∈ An ∩ P1 : rpos(s) 6= 0}

that transforms the quintuple

(asc, rep,max, rmin, rpos) to (asc, rep + 1,max, rmin− 1, rpos− 1),

and satisfies

zero(s) = zero(f3(s)) + χ(rpos(s) = 0),

ealm(s) = ealm(f3(s))− χ(Prm(s)rpos(s) = max(s) + 1).

Proof. For any ascent sequence s ∈ T3 with rpos(s) = i, remove the rightmost Rmin(s)i and
add the integer asc(s) at the end. Let f3(s) be the resulting sequence and the map f3 is clearly
a bijection (see Figure 4.1). Only when the entry ealm(s) on the (max(s) + 1)-th position of
s is also the rpos(s)-th right-to-left minimum, we have ealm(f3(s)) = ealm(s) + 1. It is not
hard to verify the other statistics. �

Lemma 12. There is a bijection

f4 : T4 ∩An →{s ∈ An ∩ Pc1 : rpos(s) 6= 0}

that transforms the quintuple

(asc, rep,max, rmin, rpos) to (asc, rep,max, rmin− 1, rpos− 1),

and satisfies

zero(s) = zero(f4(s)) + χ(rpos(s) = 0),

ealm(s) = ealm(f4(s))− χ(Prm(s)rpos(s) = max(s) + 1).

Proof. For any ascent sequence s ∈ T4∩An with rpos(s) = i, replacing the rightmost Rmin(s)i
by the integer sebr(s) yields an ascent sequence f4(s) ∈ Pc1. The map f4 is invertible and
therefore bijective (see Figure 4.1). Similar to Lemma 11, it is straightforward to check the
corresponding statistics. �

Example 2. For s = (0, 0, 1, 2, 0,1, 2,1, 2, 4, 3, 5), then f3(s) = (0, 0, 1, 2, 0, 1,2,2, 4, 3, 5, 7),
which, according to Lemma 11, is an ascent sequence with rpos(f3(s)) = 2 and the last entry
7 is an Masc. For s̃ = (0, 0, 1, 2, 0,1, 2,1, 4, 3, 5), then f4(s̃) = (0, 0, 1, 2, 0, 1,2,2, 4, 3, 5). By
Lemma 12, it is an ascent sequence with rpos(f4(s̃)) = 2 and the last entry 5 is not an Masc.
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xi xi xi+1�= ∅

min= xi+1 no Masc

s :
xp−1

xi xi+1�= ∅

min= xi+1

xp−1

f3(s) :
xp

Masc

xi xi

s :
xi+1�= ∅

min= x < xi+1 not Masc

xp−1

xi x
f4(s) :

xi+1�= ∅

min= x not Masc

xp−1

Figure 4.1. Two bijections f3 and f4 on ascent sequences s ∈ T3∪̇T4 with
rpos(s) = i and rmin(s) = p. Here xi always denotes the entry of the i-th
right-to-left minimum, so xp−1 is the last entry of s.

Now we divide the subset T5 according to the change of statistics max, ealm.
Let M5,1 be the set of ascent sequences s ∈ T5 whose second rightmost entry Rmin(s)rpos(s)

is not a maximal of s or s belongs to the set

{s ∈ A1 : Prm(s)rpos(s)+1 6= Prm(s)rpos(s) + 1 and Prm(s)rpos(s) 6= max(s) + 1}.
Furthermore, let

M5,2 := {s ∈ A1 : Prm(s)rpos(s)+1 6= Prm(s)rpos(s) + 1 and Prm(s)rpos(s) = max(s) + 1}
and M5,3 := T5 −M5,1 −M5,2.

Proposition 13. There is a bijection

f5 : T5 ∩An → (T3∪̇T4∪̇T5) ∩ {s ∈ An : rpos(s) 6= 0}

that satisfies zero(s) = zero(f5(s)) + χ(rpos(s) = 0) and transforms

(asc, rep, rmin, rpos) to (asc, rep, rmin, rpos− 1);

(max, ealm) to (max, ealm), if s ∈ M5,1,

(max, ealm) to (max, ealm− 1), if s ∈ M5,2,

(max, ealm) to (max− 1, ealm− 1), if s ∈ M5,3.

The proof of Proposition 13 is quite involved and therefore we put it in Section 8.

5. Bijective proof of the septuple equidistribution

This section is devoted to complete the bijective proof of Theorem 4. Before we proceed
to prove Theorem 4, we review the last ingredient of the proof: a decomposition of ascent
sequences from [13], which is associated with the statistic ealm.

The decomposition is formulated slightly different from [13]. The set A∗ is partitioned into
the following disjoint subsets:

D1 := {s ∈ A∗ : |s| = max(s) + 1},
D2 := {s ∈ A∗ −D1 : smax(s)+2 ≤ ealm(s)},
D3 := {s ∈ A∗ −D1 : smax(s)+2 = ealm(s) + 1,max(s) /∈ {si : max(s) + 2 ≤ i ≤ |s|}},
D4 := {s ∈ A∗ −D1 : smax(s)+2 = ealm(s) + 1,max(s) ∈ {si : max(s) + 2 ≤ i ≤ |s|}},
D5 := {s ∈ A∗ −D1 : smax(s)+2 ≥ ealm(s) + 2}.

For example, let s = (0, 1, 2, 0, 1, 4, 3, 5), then s ∈ D4 because max(s) = 3, s5 = ealm(s)+1 = 1
and 3 appears after s4. Let s = (0, 1, 2, 0, 3, 4, 3, 5), then s ∈ D5 since s5 = 3 > ealm(s) + 2.
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A sequence of transformations on Di for 1 ≤ i ≤ 5 from [13] is in parallel with the ones
in Section 4. Here we provide these bijections explicitly in the proofs, but omit other details
since they are very straightforward.

Lemma 14 (Lemma 8 of [13]). There is a bijection

h2 : D2 ∩An → {(i, s) : s ∈ A∗ ∩An−1, ealm(s) ≤ i < max(s)}
that sends s to a pair h2(s) = (ealm(s), s∗) satisfying

(asc, rmin, rpos,max)s = (asc, rmin, rpos,max)s∗,

zero(s) = zero(s∗) + χ(ealm(s) = 0) and rep(s) = rep(s∗) + 1.

Proof. For any s ∈ D2, remove the entry ealm(s) at the (max(s) + 1)-th position of s. Let the
resulting sequence be s∗ and define h2(s) = (ealm(s), s∗). �

Let P2 be the set of ascent sequences s ∈ A∗ such that the integer max(s) − 1 appears
exactly once in s. Denote by Pc2 the complement of P2 in A∗.

Lemma 15 (Lemma 10 of [13]). There is a bijection

φ2 : An ∩ P2 → An−1 ∩A∗

that transforms the septuple

(asc, rep, zero,max, ealm, rmin, rpos) to (asc + 1, rep, zero,max + 1, ealm, rmin, rpos).

Proof. For any s ∈ P2, remove the unique entry max(s)− 1 and replace all entries y by y − 1
if y ≥ max(s). Let φ2(s) be the resulting sequence. �

Lemma 16 (Lemma 9 of [13]). There is a bijection

h3 : D3 ∩An → {s ∈ An ∩ P2 : ealm(s) 6= 0}
that transforms the quintuple

(asc, rep, rmin,max, ealm) to (asc, rep + 1, rmin,max− 1, ealm− 1),

and satisfies

zero(s) = zero(h3(s)) + χ(ealm(s) = 0),

rpos(s) = rpos(h3(s))− χ(Prm(s)rpos(s) = max(s) + 1).

Proof. For any s ∈ D3, replace the entry ealm(s) on the (max(s) + 1)-th position by max(s).
Define h3(s) as the resulting sequence. �

Lemma 17 (Lemma 11 of [13]). There is a bijection

h4 : D4 ∩An →{s ∈ An ∩ Pc2 : ealm(s) 6= 0}
that transforms the quintuple

(asc, rep, rmin,max, ealm) to (asc, rep, rmin,max− 1, ealm− 1),

and satisfies

zero(s) = zero(h4(s)) + χ(ealm(s) = 0),

rpos(s) = rpos(h4(s))− χ(Prm(s)rpos(s) = max(s) + 1).

Proof. For any s ∈ D4, replace the entry ealm(s) on the (max(s) + 1)-th position by max(s).
Define h4(s) as the resulting sequence. �
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By taking the change of statistics into account, we further divide the subset D5 into three
disjoint subsets, i.e., D5 = D5,1∪̇D5,2∪̇D5,3 where

D5,1 = {s ∈ D5 : min{si,max(s) + 2 ≤ i ≤ |s|} ≤ ealm(s)},
∪̇{s ∈ D5 : min{si,max(s) + 2 ≤ i ≤ |s|} = ealm(s) + 1, rpos(s) ≥ ealm(s) + 1},

D5,2 = {s ∈ D5 : min{si,max(s) + 2 ≤ i ≤ |s|} = ealm(s) + 1, rpos(s) = ealm(s)},
D5,3 = {s ∈ D5 : min{si,max(s) + 2 ≤ i ≤ |s|} ≥ ealm(s) + 2}.

Note that by definition D5,2 =M5,2.

Lemma 18. There is a bijection

h5 : D5 ∩An → (D3∪̇D4∪̇D5) ∩ {s ∈ An : ealm(s) 6= 0}

that satisfies zero(s) = zero(h5(s)) + χ(ealm(s) = 0) and transforms

(asc, rep,max, ealm) to (asc, rep,max, ealm− 1),

(rmin, rpos) to (rmin, rpos) if s ∈ D5,1,

(rmin, rpos) to (rmin, rpos− 1) if s ∈ D5,2,

(rmin, rpos) to (rmin− 1, rpos− 1) if s ∈ D5,3.

Proof. For any ascent sequence s ∈ D5, define h5(s) to be the sequence after increasing the
entry on the (max(s) + 1)th position by one. �

We are now in a position to prove Theorem 4.

Proof. We prove this by induction on the numbers |s|−max(s) for all ascent sequences s ∈ An.
For the trivial case |s| = max(s) = n, that is, s = (0, 1, . . . , n− 1), we have Φ(s) = s.

For s ∈ D1 ∩An, that is, |s| = max(s) + 1 = n. Assume that ealm(s) = i and max(s) = p,
then s has the form (0, 1, . . . , p− 1, i). Take Φ(s) to be the sequence after moving the second
i to the right of the first i of s, i.e., Φ(s) = (0, 1, . . . , i− 1, i, i, . . . , p− 1) ∈ T1 ∩An and (1.7)
clearly holds.

Suppose that the septuple (asc, rep, zero,max, ealm, rmin, rpos) on ascent sequences s ∈ An

with |s| −max(s) = N − 1 is equidistributed to (asc, rep, zero, rmin, rpos,max, ealm) on ascent
sequences s ∈ An with |s|− rmin(s) = N −1 under the bijection Φ, we next show it also holds
when N − 1 is replaced by N .

For any ascent sequence s ∈ A∗ ∩An with |s| −max(s) = N , we are going to define Φ.
If s ∈ D2 ∩ An, then according to Lemma 14, h2(s) = (ealm(s), s∗) with s∗ ∈ A∗ ∩ An−1

and |s∗| −max(s∗) = N − 1. By induction hypothesis and Lemma 9, define

Φ(s) = f−12 (ealm(s),Φ(s∗)) ∈ T2 ∩An,

which is a bijection between the sets D2 ∩An and T2 ∩An such that |s| −max(s) = |Φ(s)| −
rmin(Φ(s)) = N . Furthermore, it follows from Lemma 9 and 14 that (1.7) is true between the
subsets D2 ∩An and T2 ∩An.

If s ∈ D3 ∩ An, then by Lemma 15 and 16, let s̃ = (φ2 ◦ h3)(s) ∈ An−1 ∩ A∗ such that
|s̃| −max(s̃) = N − 1. As a result, by induction hypothesis, Lemma 10 and 11, define

Φ(s) = (f−13 ◦ φ−11 ◦ Φ ◦ φ2 ◦ h3)(s) ∈ T3 ∩An, (5.1)

which is a bijection between the sets D3 ∩An and T3 ∩An such that |s| −max(s) = |Φ(s)| −
rmin(Φ(s)) = N . In addition, Φ also satisfies (1.7) because of Lemma 10, 11, 15 and 16.
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If s ∈ D4 ∩An, then according to Lemma 17, h4(s) ∈ An ∩ Pc2. Furthermore by induction
hypothesis, there is a bijection Φ between An−1 ∩A∗ and itself with |s| −max(s) = |Φ(s)| −
rmin(Φ(s)) = N−1. Together with Lemma 10 and 15, we find that φ−11 ◦Φ◦φ2 is the bijection
between the set An ∩ P2 and An ∩ P1 with |s| − max(s) = |Φ(s)| − rmin(Φ(s)) = N − 1. In
view of the induction hypothesis on the set An, it follows that the complement An ∩ Pc2 is in
bijection with An ∩ Pc1 via Φ such that |s| −max(s) = |Φ(s)| − rmin(Φ(s)) = N − 1. Define

Φ(s) = (f−14 ◦ Φ ◦ h4)(s) ∈ T4 ∩An, (5.2)

which is a bijection between the sets D4 ∩An and T4 ∩An such that |s| −max(s) = |Φ(s)| −
rmin(Φ(s)) = N . The bijection Φ satisfies (1.7) according to Lemma 12 and 17.

If s ∈ D5 ∩An, we will define Φ : D5 ∩An → T5 ∩An by the already known bijection (5.2).
If max(s)− ealm(s) = 2, then h5(s) ∈ {s ∈ D4 ∩An : ealm(s) 6= 0}. In view of (5.2) for the

case when s ∈ D4 with |s|−max(s) = N , we know that (Φ◦h5)(s) ∈ {s ∈ T4∩An : rpos(s) 6= 0}.
As a result, we take

Φ(s) = (f−15 ◦ Φ ◦ h5)(s) ∈ T5 ∩An, (5.3)

which is a bijection for the case max(s)− ealm(s) = 2 and |s| −max(s) = N . Now with this
known bijection, we can repeatedly use (5.3) to recursively define the bijection Φ : D5∩An →
T5 ∩An for other ascent sequences s ∈ D5 ∩An with max(s)− ealm(s) > 2.

In addition, by combining Proposition 13 and Lemma 18, we can recursively verify that
for 1 ≤ i ≤ 3, s ∈ D5,i if and only if (Φ ◦ h5)(s) ∈ f5(M5,i), i.e., according to (5.3), (f−15 ◦Φ ◦
h5)(s) = Φ(s) ∈ M5,i. This implies that Φ satisfies (1.7).

To sum it up, for all 1 ≤ i ≤ 5, the bijection Φ : Di ∩ An → Ti ∩ An satisfying (1.7) for
s ∈ Di ∩ An and |s| − max(s) = N is constructed, under the assumption that (1.7) is true
when s ∈ Di ∩An and |s| −max(s) = N − 1. It follows by induction that (1.7) holds, which
finishes the proof. �

6. Refined generating functions

This section deals with refined enumerations of ascent sequences with respect to the Euler–
Stirling statistics asc, rep, max and rmin, with the purpose to establish bi-symmetric distri-
butions directly from the generating function.

Since the new decomposition of ascent sequences in Section 3 is parallel to the one from
[13], it makes no real difference which one we choose to derive the refined generating functions,
the decomposition from [13] or the new one in Section 3 of this paper. For convenience, we
use the decomposition from [13] because some explicit computations were already done there;
we only need to point out the differences when the statistic rmin is included.

We adopt the notations from [13]. Let A be the set of all ascent sequences, i.e., A =
A∗ ∪ {s : s = (0, 1, . . . , |s| − 1)} and define

F (t;x, y, w, u, z, v) :=
∑
s∈A

|s|>max(s)

t|s|xrep(s)ymax(s)wealm(s)uasc(s)zzero(s)vrmin(s),

G(t;x, y, w, u, z, v) :=
∑
s∈A

t|s|xrep(s)ymax(s)wealm(s)uasc(s)zzero(s)vrmin(s)

= vtyz(1− vtuy)−1 + F (t;x, y, w, u, z, v).

Furthermore, let ap(t;x,w, u, z, v) := [yp]F (t;x, y, w, u, z, v).
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Here is the partition of the set A∗ into disjoint subsets from [13]: the first two subsets D1

and D2 are defined in Section 5.

D1 = {s ∈ A∗ : |s| = max(s) + 1},
D2 = {s ∈ A∗ −D1 : smax(s)+2 ≤ ealm(s)},
S3 := {s ∈ A∗ −D1 : smax(s)+2 > ealm(s),max(s) /∈ {si : max(s) + 2 ≤ i ≤ |s|}},
S4 := {s ∈ A∗ −D1 : smax(s)+2 > ealm(s),max(s) ∈ {si : max(s) + 2 ≤ i ≤ |s|}}.

By definition D3∪̇D4∪̇D5 = S3∪̇S4. For each above subset, we will calculate the corresponding
generating function in order to formulate a functional equation of F (t;x, y, w, u, z, v) as below.

Proposition 19. The generating function F (t;x, y, w, u, z, v) satisfies(
1− ry − 1

y(1− w)

)
F (t;x, y, w, u, z, v)

=
xyzvt2(y2tuwv(1− z) + z(y − yr + 1))

(1− ytu)(1− ytuvw)(y − yzr + z)
− tx

1− w
F (t;x,wy, 1, u, z, v)

+ (tux+ y−1 − tu)

(
wy(1− z) + z(y − yr + 1)

(1− w)(y − yzr + z)

)
F (t;x, y, 1, u, z, v)

+
y2u2vt2z(1− v)(tux+ y−1 − tu)

1− ytu

(
y2tuvw(1− z) + z(y − yr + 1)

(1− ytuvw)(y − yzr + z)

)
F (t;x, y, 1, u, 1, v),

(6.1)

where r = t(u+ x− xu).

Proof. We omit the proofs of the generating function formulas for each subset as they are
direct extensions of the ones from [13]. For the first two subsets D1 and D2, the generating
functions are respectively:∑

s∈D1

t|s|xrep(s)ymax(s)wealm(s)uasc(s)zzero(s)vrmin(s) =
xyzvt2(z + ytuwv − ytuzwv)

(1− ytu)(1− ytuwv)
, (6.2)

and∑
s∈D2

t|s|xrep(s)ymax(s)wealm(s)uasc(s)zzero(s)vrmin(s)

=
tx

1− w
(F (t;x, y, w, u, z, v)− F (t;x, yw, 1, u, z, v)) + tx(z − 1)F (t;x, y, 0, u, z, v). (6.3)

For the second two subsets S3 and S4, the generating functions are respectively:∑
s∈S3

t|s|xrep(s)ymax(s)wealm(s)uasc(s)zzero(s)vrmin(s)

= (tux)

(
w + z − wz

1− w

)
F (t;x, y, 1, u, z, v)− tux

1− w
F (t;x, y, w, u, z, v)

− tux(z − 1)F (t;x, y, 0, u, z, v)

+
y2u3t3vxz(1− v)(z(1− tuywv) + tuywv)

(1− tuywv)(1− tuy)
F (t;x, y, 1, u, 1, v), (6.4)
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and ∑
s∈S4

t|s|xrep(s)ymax(s)wealm(s)uasc(s)zzero(s)vrmin(s)

=
(w + z − wz)(1− ytu)

(1− w)y
F (t;x, y, 1, u, z, v)

+

(
ytuvw(1− v)

1− ytuvw
+ z − zv

)
yvu2t2zF (t;x, y, 1, u, 1, v)

− (1− tuy)

(1− w)y
F (t;x, y, w, u, z, v)− (z − 1)(1− tuy)

y
F (t;x, y, 0, u, z, v). (6.5)

The sum of all generating functions (6.2)–(6.5) equals F (t;x, y, w, u, z, v), which leads to(
1− yt(x+ u− ux)− 1

y(1− w)

)
F (t;x, y, w, u, z, v)

=
xyzvt2(z + ytuwv − ytuzwv)

(1− ytu)(1− ytuwv)
− tx

1− w
F (t;x, yw, 1, u, z, v)

+ (z − 1)(t(x+ u− xu)− y−1)F (t;x, y, 0, u, z, v)

+
w + z − wz

1− w
(uxt+ y−1 − ut)F (t;x, y, 1, u, z, v),

+
yu2vt2z(1− v)(z − ztuywv + tuywv)

1− ytuvw

(
1 +

yutx

1− yut

)
F (t;x, y, 1, u, 1, v). (6.6)

We next set w = 0 and r = t(x+ u− xu) on both sides, yielding

F (t;x, y, 0, u, z, v) =
y2xz2vt2

(1− ytu)(y − yzr + z)
+
z(ytux− ytu+ 1)

y − yzr + z
F (t;x, y, 1, u, z, v)

+
y2u2vt2z2(1− v)(ytux− ytu+ 1)

(1− ytu)(y − yzr + z)
F (t;x, y, 1, u, 1, v).

Substituting the above expression for F (t;x, y, 0, u, z, v) in (6.6), we arrive at (6.1). �

By solving (6.1) for the case z = 1, we deduce the generating function for the quadruple
(asc, rep,max, rmin) of statistics on ascent sequences, which is part of Theorem 6.

Theorem 20. The generating function G(t;x, y, u, v) defined in (1.11) is given by (1.12).

Proof. We apply the kernel method to (6.1). Choose

1− yr − 1

y(1− w)
= 0, that is, w = 1 + y−1 − r

so that the left-hand-side of (6.1) becomes zero. Consequently the functional equation (6.1)
is simplified to

F (t;x, y, 1, u, z, v) =
xzvt2(1− yr)(ytuv(1− z) + z)

(1− ytu)(1− tuv(y − yr + 1))(tux+ y−1 − tu)

+
tx(y − yzr + z)

(y − yr + 1)(tux+ y−1 − tu)
F (t;x, y − yr + 1, 1, u, z, v)

− yu2vt2z(1− v)(yr − 1)(ytuv(1− z) + z)

(1− ytu)(1− tuv(y − yr + 1))
F (t;x, y, 1, u, 1, v). (6.7)
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We set z = 1 on both sides, leading to

F (t;x, y, 1, u, 1, v) =
xvt2(1− yr)

(1− ytu)(1− tuv(y − yr + 1))(tux+ y−1 − tu)

+
tx

(tux+ y−1 − tu)
F (t;x, y − yr + 1, 1, u, 1, v)

− yu2vt2(1− v)(yr − 1)

(1− ytu)(1− tuv(y − yr + 1))
F (t;x, y, 1, u, 1, v),

which can be simplified as

F (t;x, y, 1, u, 1, v)

=
xvt2(1− yr)

(1− ytu+ tuv(yr − 1))(1− ytuv)(tux+ y−1 − tu)

+
tx(1− ytu)(1− tuv(y − yr + 1))

(tux+ y−1 − tu)(1− ytu+ tuv(yr − 1))(1− ytuv)
F (t;x, y − yr + 1, 1, u, 1, v).

Define δm := r−1− r−1(1− yr)(1− r)m so that δ1 = yw = y+ 1− yr. By iterating the above
equation, we conclude that

F (t;x, y, 1, u, 1, v)

=

∞∑
m=0

rv(1− yr)(1− r)m

(x− xu+ u(1− yr)(1− r)m)(1− ytuv)

×
m∏
i=0

x(1− (1− yr)(1− r)i)(x− xu+ u(1− yr)(1− r)i)
(x− u(x− 1)(1− yr)(1− r)i)(x− xu+ u(1− rv)(1− yr)(1− r)i)

, (6.8)

which is equivalent to (1.12). �

7. Transformations of basic hypergeometric series

For convenience, we recall some standard notions from the theory of basic hypergeometric
series, cf. [16].

For indeterminates a and q (the latter is referred to as the base), and non-negative integer
k, the basic shifted factorial (or q-shifted factorial) is defined as

(a; q)k :=
k∏
j=1

(1− aqj−1). (7.1)

This also makes sense for k =∞, where the infinite product is viewed as a formal power series
in q (whereas, viewed as an analytic expression in q, we would need to insist on |q| < 1, for
convergence). When dealing with products of q-shifted factorials, it is convenient to use the
following short notation,

(a1, . . . , am; q)k := (a1; q)k · · · (am; q)k, (7.2)

where again k is a non-negative integer or ∞.
The αφβ series defined in (1.8) (where the lower parameters are assumed to be chosen such

that no poles occur in the summands of the series) terminates if one of the upper parameters,
say a1, is of the form q−n. Since (q−n; q)k = 0 for k > n, the series in that case contains
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only finitely many non-vanishing terms. If the series does not terminate, one usually imposes
|q| < 1. See [16, Sec. 1.2] for conditions under which the series converges.

One of the most important identities in the theory of basic hypergeometric series is the
Sears transformation [16, (III.15)],

4φ3

[
q−n, a, b, c

d, e, abcq1−n/de
; q, q

]
=

(e/a, de/bc; q)n
(e, de/abc; q)n

4φ3

[
q−n, a, d/b, d/c
d, aq1−n/e, de/bc

; q, q

]
. (7.3)

In (7.3), a, b, c, d, e and q are indeterminates and n is a non-negative integer (which is respon-
sible that both 4φ3 series are actually finite sums and each contains only n+ 1 non-vanishing
terms).

While for non-terminating basic hypergeometric series in base q we usually consider expan-
sions around q = 0, in this paper (and more generally, when dealing with generating functions
of members of the Fishburn family) we are dealing with power series in r, which can be writ-
ten as basic hypergeometric series in base q = 1− r, thus can be viewed as functions analytic
around q = 1. We need to be cautious when we resort to non-terminating identities for basic
hypergeometric series. The first part of the argument in the proof of Theorem 5, as our main
result in this section, is similar to that used by Andrews and Jeĺınek in [1] for establishing
q-series identities around q = 1.

Proof of Theorem 5. For each m ≥ 0 the expansion of (1− a; 1− r)m in monomials airl only
involves terms with i + l ≥ m and each factor in the denominator of the series has a non-
vanishing constant term. Thus, in the expansion of the series in the variables a and r the
contribution of coefficients for each monomial airl is finite. It follows that both sides of the
identity are formal power series in the monomials airl, thus are analytic functions in a.

Now both sides of (1.9) agree for a = 1−(1−r)−n where n = 0, 1, . . . by the (q, a, b, c, d, e) 7→
(1− r, (1− r)j , b, c, d, e) special case of the transformation in (7.3). Since we have shown (1.9)
for infinitely many values of a accumulating at a = −∞, i.e. 1− a =∞ (the transformation
(7.3) itself is valid in the limiting case n → ∞ (i.e. q−n → ∞)!), by the identity theorem in
complex analysis the transformation (1.9) is true for all a in its domain of analyticity. �

Remark 6. It is interesting to notice that while the classical Sears transformation in (7.3)
concerns a transformation between two terminating 4φ3 series in base q, valid as an iden-
tity around q = 0, the identity in Theorem 5 concerns a transformation between two non-
terminating 4φ3 series in base q = 1 − r, valid as an identity around r = 0 or, equivalently,
q = 1.

We give two noteworthy specializations as immediate corollaries. The first one is obtained
by letting a→ 1 in (1.9).

Corollary 21. Let b, c, d, e, r be complex variables, j be a non-negative integer. Then, as-
suming that none of the denominators in (7.4) have vanishing constant term in r, we have
the following transformation of convergent power series in r:

3φ2

[
(1− r)j , b, c

d, e
; 1− r, 1− r

]
=

((1− r)/e; 1− r)j
((1− r)bc/de; 1− r)j

3φ2

[
(1− r)j , d/b, d/c

d, de/bc
; 1− r, 1− r

]
. (7.4)

The second one is obtained by replacing c by d/c in (1.9) and letting d→ 0.



20 EMMA YU JIN AND MICHAEL J. SCHLOSSER

Corollary 22. Let a, b, c, e, r be complex variables, j be a non-negative integer. Then, as-
suming that none of the denominators in (7.5) have vanishing constant term in r, we have
the following transformation of convergent power series in a and r:

3φ2

[
(1− r)j , 1− a, b

e, (1− r)j+1(1− a)b/ce
; 1− r, 1− r

]
=

((1− r)/e, (1− r)(1− a)b/ce; 1− r)j
((1− r)(1− a)/e, (1− r)b/ce; 1− r)j

3φ2

[
(1− r)j , 1− a, c

ce/b, (1− r)j+1(1− a)/e
; 1− r, 1− r

]
. (7.5)

The here obtained non-terminating basic hypergeometric transformations of base q = 1− r
(expanded around r = 0) are indeed powerful for proving equidistribution results for the
Euler–Stirling statistics.

Proof of Theorem 6. Note that Theorem 20 as part of Theorem 6 is already proved in Section
6. It remains to establish (1.10) and (1.13).

To show the symmetry G(t;x, y, u, v) = G(t;x, v, u, y) is equivalent to showing the identity

∞∑
k=0

(
(1− yr)(1− r), u(1−yr)x(u−1) ; 1− r

)
k

(1− r)k(
u(x−1)(1−yr)(1−r)

x , u(1−vr)(1−yr)(1−r)x(u−1) ; 1− r
)
k

=

(
1− x

u(x−1)(1−yr)

)
(

1− x
u(x−1)(1−vr)

) ∞∑
k=0

(
(1− vr)(1− r), u(1−vr)x(u−1) ; 1− r

)
k

(1− r)k(
u(x−1)(1−vr)(1−r)

x , u(1−vr)(1−yr)(1−r)x(u−1) ; 1− r
)
k

. (7.6)

Identity (7.6) is readily verified by virtue of the j = 1 and

b = (1− yr)(1− r), c =
u(1− yr)
x(u− 1)

,

d =
u(1− vr)(1− yr)(1− r)

x(u− 1)
, e =

u(x− 1)(1− yr)(1− r)
x

special case of Corollary 21.
On the other hand, to show the bi-symmetry G(t;x, y, u, z) = G(t;u, z, x, y), in view of

Theorem 2, is equivalent to showing the identity

∞∑
k=0

((1− zr)(1− yr); 1− r)k
(

1− u(1−yr)
x(u−1)

)
(
u(x−1)(1−yr)(1−r)

x ; 1− r
)
k

(
1− u(1−yr)

x(u−1) (1− r)k
)(1− r)k

=

(
1− u(1−yr)

x(u−1)

)(
1− x

u(x−1)(1−yr))
)

(
1− x(1−zr)

u(x−1)

)(
1− u

x(u−1)(1−zr))
)

×
∞∑
k=0

((1− zr)(1− yr); 1− r)k
(

1− x(1−zr)
u(x−1)

)
(
z(u−1)(1−zr)(1−r)

u ; 1− r
)
k

(
1− x(1−zr)

u(x−1) (1− r)k
)(1− r)k. (7.7)

Now, identity (7.7) is readily verified by virtue of the j = 1 and

a = r(z + y − zyr), b =
u(1− yr)
x(u− 1)

,
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c =
x(1− zr)
u(x− 1)

, e =
u(1− yr)(1− r)

x(u− 1)

special case of Corollary 22. �

8. Technical Lemmas and Propositions

The purpose of this section is to prove Proposition 13. We take the ‘divide-and-conquer’
strategy. That is, we first divide the set T5 into four subsets T5,i, 1 ≤ i ≤ 4, then establish
Proposition 13 for each of them, and finally collect the subsets T5,i according to the change
of statistics.

By definition, T5 can be divided into the following four disjoint subsets: (see Figure 8.1)

T5,1 := {s ∈ A1 : sebr(s) > Rmin(s)rpos(s)+1 and Prm(s)rpos(s)+1 = Prm(s)rpos(s) + 1},
T5,2 := {s ∈ A1 : Prm(s)rpos(s)+1 6= Prm(s)rpos(s) + 1},
T5,3 := A2 − T4,
T5,4 := {s ∈ A1 : sebr(s) = Rmin(s)rpos(s)+1,Prm(s)rpos(s)+1 = Prm(s)rpos(s) + 1} − T3.

Since T3∪̇T5,1∪̇T5,2∪̇T5,4 = A1, T4∪̇T5,3 = A2 and T1∪̇T2 = A∗ − (A1∪̇A2), it is clear that A∗

is the disjoint union of subsets Ti, T5,i for 1 ≤ i ≤ 4.

xi xi

T5,3:
xi+1�= ∅

min< xi+1

xp−1

is Masc

xi xi

T5,4:
xi+1�= ∅

min= xi+1

xp−1

with Masc

xi xi

T5,1:
xi+1�= ∅

min> xi+1

xi xi

T5,2:
xi+1�= ∅

min≥ xi+1

xp−1

�= ∅

Figure 8.1. A partition of the set T5: For any s ∈ T5 with rpos(s) = i
and rmin(s) = p, xi = Rmin(s)i denotes the i-th right-to-left minimum of s;
black dots and squares represent the rightmost and the second rightmost entry
respectively.

8.1. Bijections on the first two subsets. Here we are going to introduce two bijections on
the first two subsets T5,1 and T5,2 respectively. A new statistic minMasc is defined in order
to describe the image sets of T5,1.

Definition 7. (statistic minMasc) For any ascent sequence s, define minMasc(s) to be the
minimal Masc (see Definition 5) between the two rightmost entries Rmin(s)rpos(s). If no such
Masc exists, then we assume minMasc(s) = 0.

For example, given s = (0, 1, 2, 1, 3, 4, 4, 3, 5), we have rpos(s) = 2 and minMasc(s) = 4
because 4 is the minimal Masc between the two rightmost entries Rmin(s)2 = 3.

Lemma 23. There is a bijection f5,1 between the set T5,1∩An and the set of ascent sequences
s ∈ An such that

• rpos(s) 6= 0 and minMasc(s) = 0;
• the rightmost Rmin(s)rpos(s)−1 is next to the second rightmost Rmin(s)rpos(s);
• the two rightmost Rmin(s)rpos(s) are not next to each other.
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In addition, the bijection f5,1 sends the septuple

(asc, rep,max, ealm, rmin, rpos) to (asc, rep,max, ealm, rmin, rpos− 1),

and satisfies
zero(s) = zero(f5,1(s)) + χ(rpos(s) = 0).

Proof. For any ascent sequence s ∈ T5,1 with rpos(s) = i, insert Rmin(s)i+1 right after the
second rightmost Rmin(s)i and remove the rightmost Rmin(s)i; see Figure 8.2. Define the
resulting sequence as f5,1(s). It is easily seen that f5,1 is a bijection and it fulfills all properties
listed in this lemma. �

Lemma 24. There is a bijection f5,2 between the set T5,2∩An and the set of ascent sequences
s ∈ An such that rpos(s) 6= 0 and

• the rightmost Rmin(s)rpos(s)−1 is not next to the second rightmost Rmin(s)rpos(s);
• the two rightmost Rmin(s)rpos(s) are not next to each other.

In addition, the bijection f5,2 sends the quintuple

(asc, rep,max, rmin, rpos) to (asc, rep,max, rmin, rpos− 1),

and satisfies

zero(s) = zero(f5,2(s)) + χ(rpos(s) = 0),

ealm(s) = ealm(f5,2(s))− χ(Prm(s)rpos(s) = max(s) + 1).

Proof. For any ascent sequence s ∈ T5,2 with rpos(s) = i, replace the rightmost Rmin(s)i by
Rmin(s)i+1; see Figure 8.2. Define the resulting sequence to be f5,2(s). It is straightforward
to verify the change of statistics. �

xi xi xi+1�= ∅

min> xi+1

xp−1 xi xi

s:
xi+1�= ∅

min≥ xi+1

xp−1

�= ∅
s:

xi xi+1�= ∅
f5,1(s):

xi+1

min> xi+1

xp−1 xi xi+1

f5,2(s):
xi+1�= ∅

min≥ xi+1

xp−1

�= ∅
no

Masc

Figure 8.2. The bijections f5,1 and f5,2 in Lemma 23 and 24. Here xi =
Rmin(s)i and i = rpos(s).

8.2. Bijections on the second two subsets. Now we turn to introduce a bijection on the
other two subsets T5,3 and T5,4.

Proposition 25. Let B be a set of ascent sequences s ∈ A∗∩An with the following properties:

• rpos(s) 6= 0 and minMasc(s) 6= 0;
• the rightmost Rmin(s)rpos(s)−1 is next to the second rightmost Rmin(s)rpos(s);

Then, there is a bijection f∗5 between the set (T5,3∪̇T5,4) ∩ An and B and it transforms the
quadruple

(asc, rep, rmin, rpos) to (asc, rep, rmin, rpos− 1),

and satisfies
zero(s) = zero(f∗5 (s)) + χ(rpos(s) = 0).
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If the second rightmost Rmin(s)rpos(s) is a maximal of s, then f∗5 transforms the pair

(max, ealm) to (max− 1, ealm− 1);

otherwise it transforms the pair

(max, ealm) to (max, ealm).

We divide Proposition 25 into two Lemmas (Lemma 26 and 27) and prove them in subsec-
tion 8.3 and 8.4 separately as the proofs employ different substitution/insertion rules.

Before we proceed with the proof of Proposition 25, we show how Proposition 25 contributes
to complete the proof of Proposition 13.

Proof of Proposition 13. Note that the disjoint union of all image sets of f5,1, f5,2 and
f∗5 is the set (A1∪̇A2) ∩ An = (T3∪̇T4∪̇T5) ∩ An of ascent sequences s with rpos(s) 6= 0.
Consequently, we take f5(s) = f5,i(s) when s ∈ T5,i for i = 1, 2 and set f5(s) = f∗5 (s) when
s ∈ T5,3∪̇T5,4. Furthermore, it is not hard to see that f5 satisfies all desired properties after
combining Lemma 23, 24 and Proposition 25 (Lemma 26 and 27). �

8.3. Two substitution rules.

Lemma 26. Let B1 denote a subset of B (defined in Proposition 25) such that the non-zero
integer minMasc(s) does not appear after the rightmost Rmin(s)rpos(s). Then, Proposition 25
is true when f∗5 is restricted between T5,3 ∩An and B1.

Two substitution rules R1 and R2 are of central importance in the construction of this
bijection, so we introduce them before proving Lemma 26.

The key observation is that all the following substitutions (1)–(3) in R1 and (4)–(7) in R2

are reversible and they preserve all five Euler–Stirling statistics asc, rep, max, zero and rmin.
For convenience, given an ascent sequence s, let xj = Rmin(s)j for all 0 ≤ j < rmin(s).
Rule R1: For any ascent sequence s such that for some i the entry xi appears at least twice

after the rightmost xi−1, we will replace each non-rightmost xi by an Masc m of s as long as

(i) xi < m;
(ii) xi is located after the Masc m and the rightmost xi−1;
(iii) all entries between this xi and the rightmost xi are different from m.

This substitution procedure starts with the first xi (also the leftmost xi) that satisfies (i)–(iii),
and then proceeds with other non-rightmost xi’s from left to right.

Let k1 and k2 be the left and right neighbors of a given non-rightmost xi respectively, then
(k1 > xi or k1 = xi−1) and m 6= k2 ≥ xi, so there are only three possible scenarios:

(1) If one of the following is true (see Figure 8.3),
• xi < k1 < m and xi < k2 < m;
• (k1 ≥ m or k1 = xi−1) and (k2 > m or k2 = xi),

then replace the entry xi directly by m;
(2) otherwise if (see Figure 8.4),

• xi < k1 < m and (k2 > m or k2 = xi);
then insert m right before the leftmost entry that is to the left of xi and all entries
between it and k1 inclusive are greater than xi and smaller than m; afterwards remove
xi;

(3) otherwise (see Figure 8.4),
• (k1 ≥ m or k1 = xi−1) and xi < k2 < m,
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then insert m right after the rightmost entry that is to the right of xi and all entries
between it and k2 inclusive are greater than xi and smaller than m; afterwards remove
xi.

xik1 k2

mk1 k2

k1 ∈ (xi,m)

xik1 k2

mk1 k2

≥ m > m

≥ m > m

or = xi

or = xi

or = xi−1

or = xi−1

k2 ∈ (xi,m)

k1 ∈ (xi,m) k2 ∈ (xi,m)

Figure 8.3. Substitution (1) in rule R1. Here xi = Rmin(s)i and i = rpos(s).

xik1 k2k3 k4

all ∈ (xi,m)
≥ m

or = xi−1

k1 k2k3 k4

≥ m
or = xi−1

(2)

m

> m

or = xi

> m
or = xi

xik1 k2

≥ m

k3 k4

> m
or = xi

k1 k2

≥ m

k3 k4m

(3)

> m
or = xi

or = xi−1

or = xi−1

all ∈ (xi,m)

all ∈ (xi,m)

all ∈ (xi,m)

Figure 8.4. Substitutions (2) in rule R1 and (3) in rules R1,R2. Here xi =
Rmin(s)i with i = rpos(s).

Example 3. Given an ascent sequence s = (0, 1, 2, 0, 1, 4, 1, 2, 1, 1) where x1 = Rmin(s)1 = 1
appears at least twice after the rightmost x0 = Rmin(s)0 = 0 and m = 4 is an Masc, we will
replace all non-rightmost 1’s that are located after the Masc 4 by integers 4 according to Rule
R1:

s = (0, 1, 2, 0, 1, 4,1, 2, 1, 1) by substitution (3) of R1,

→ (0, 1, 2, 0, 1, 4, 2, 4,1, 1) by substitution (1) of R1,

→ (0, 1, 2, 0, 1, 4, 2, 4, 4, 1) ∈ B1 (defined in Lemma 26).

It is easy to verify that asc, rep, zero,max, rmin are preserved under the rule R1.

Rule R2: in addition to the conditions (i), (ii) and (iii) listed in R1, here we require that

(iv) the two rightmost xi are not next to each other;

Like R1, the procedure starts with the first xi (also the leftmost xi) that satisfies (i)–(iii),
and proceed with other non-rightmost xi’s from left to right.

Let k1 and k2 be the left and right neighbours of a given non-rightmost xi respectively,
then (k1 > xi or k1 = xi−1) and m 6= k2 ≥ xi, so there are four possible scenarios:

(4) If k2 = xi, then k2 is not a right-to-left minimum (because of (iv)). Assume that k2
is followed by exactly k identical entries xi that are not right-to-left minima, then
remove k2 and its k immediate followers, substitute xi by m according to (5)–(7)
below and finally add (k + 1) identical entries m after the newly inserted m;
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(5) otherwise k2 6= xi, if one of the following is true (see Figure 8.5),
• xi < k1 < m and xi < k2 < m,
• (k1 > m or k1 = xi−1) and k2 > m,

then replace the entry xi by m;
(6) otherwise if (see Figure 8.5)

• xi < k1 ≤ m and k2 > m,
then insert m right after the rightmost entry that is to the right of xi and all entries
between it and k2 inclusive are greater than m; afterwards remove xi;

(7) otherwise, do (3) of R1 (see Figure 8.4).

xik1 k2

k1 ∈ (xi,m] all > m

k3 k4

k4 ∈ [xi,m)

k1 k2

all > m

k3 k4m

xik1 k2

mk1 k2

k1 ∈ (xi,m)

xik1 k2

mk1 k2

> m

> m

> m
> m

k2 ∈ (xi,m)

k1 ∈ (xi,m) k2 ∈ (xi,m)

or = xi−1

or = xi−1
k1 ∈ (xi,m] k4 ∈ [xi,m)

Figure 8.5. Substitution (5) and (6) in rule R2. Here xi = Rmin(s)i with i = rpos(s).

Example 4. Given an ascent sequence s = (0, 1, 2, 0, 1, 4, 4, 1, 5, 2, 1, 3, 1) where x1 = 1 ap-
pears at least twice after the rightmost x0 = 0 and m = 4 is an Masc, we will replace all
non-rightmost 1’s that are located after the leftmost 4 by integers 4 according to Rule R2:

s = (0, 1, 2, 0, 1, 4, 4,1, 5, 2, 1, 3, 1) by substitution (6) of R2,

→ (0, 1, 2, 0, 1, 4, 4, 5, 4, 2,1, 3, 1) by substitution (5) of R2,

→ (0, 1, 2, 0, 1, 4, 4, 5, 4, 2, 4, 3, 1) ∈ B1 (defined in Lemma 26).

It is easy to verify that asc, rep, zero,max, rmin are preserved under the rule R2.

Remark 7. The reason to define two different substitution rules R1,R2 is that Case 1, 2 and
Case 3, 4 in the proof of Lemma 26 have to be treated differently.

We are now in a position to complete the proof of Lemma 26.

Proof. We start with showing the bijection

g : T5,3 ∩An → {s ∈ An−1 : rpos(s) 6= 0}.

For any ascent sequence s ∈ T5,3 ∩ An with rpos(s) = i, replacing the rightmost Rmin(s)i
by sebr(s) and removing the last entry leads to an ascent sequence s∗ with rpos(s∗) = i + 1.
Define g(s) = s∗ and clearly g is invertible, so g is a bijection. Similar to Lemma 12, it is
straightforward to verify that g transforms the quadruple

(asc, rep,max, rmin, rpos) to (asc + 1, rep,max, rmin, rpos− 1),

and satisfies zero(g(s)) = zero(s)−χ(rpos(s) = 0). If Prmrpos(s) 6= max(s) + 1, then ealm(s) =
ealm(g(s)); otherwise ealm(s) = ealm(g(s))− 1.

We next define the map

g5,3 : {s ∈ An−1 : rpos(s) 6= 0} → B1 (8.1)
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and then prove g5,3 is a bijection so that

f∗5 := g5,3 ◦ g : T5,3 ∩An → B1

is the desired bijection for Lemma 26.
For any ascent sequence s ∈ An−1 with rpos(s) = i 6= 0, we discuss four possible scenarios

and define the resulting sequence to be g5,3(s) in each case.
Case 1 (see Figure 8.6): if the rightmost Rmin(s)i−1 is next to the entry Rmin(s)i and

there is at least one Masc between the first two Rmin(s)i that are located after the rightmost
Rmin(s)i−1, let the smallest one be m, then

• insert m+ 1 right after the Masc m;
• replace all entries y after the inserted m+ 1 by y + 1 if y ≥ m;
• if there are only two Rmin(s)i after the rightmost Rmin(s)i−1, then stop; otherwise,

replace each Rmin(s)i that appears between the leftmost m and the rightmost Rmin(s)i
by an m according to rule R1.

xi−1 xi xim

Masc

xi

xi−1 xi m m+ 1 xi

Masc

m

y

y
′

xp−1

xp−1

Figure 8.6. Case 1: the rightmost xi−1 is next to xi and m is the smallest
Masc between the first two xi’s that are after xi−1. Here xi = Rmin(s)i with
i = rpos(s) and y′ = y + 1 if y ≥ m; otherwise y′ = y.

Example 5. For s = (0, 1, 2, 0, 1, 2, 5, 5, 2, 6, 3, 2, 1, 3, 7, 9) ∈ T5,3 ∩ A16, then after applying
the bijection g, we have g(s) = (0, 1, 2, 0, 1, 2, 5, 5, 2, 6, 3, 2, 2, 3, 7) which belongs to Case 1.
Then according to the steps in Case 1, m = 5 and

g(s)→ (0, 1, 2, 0, 1,2, 5, 6, 6, 2, 7, 3, 2,2, 3, 8)

→ (0, 1, 2, 0, 1,2, 5, 6, 6, 5, 7, 5, 3,2, 3, 8) = f∗5 (s).

Case 2 (see Figure 8.7): if the rightmost Rmin(s)i−1 is next to the entry Rmin(s)i and no
Masc appears between the first two Rmin(s)i that appear after the rightmost Rmin(s)i−1,
let m − 1 be the number of ascents from the beginning s1 to the second Rmin(s)i after the
rightmost Rmin(s)i−1, then

• insert m right before the second Rmin(s)i after the rightmost Rmin(s)i−1;
• replace any entry y after the inserted m by y + 1 if y ≥ m;
• if there are only two Rmin(s)i after the rightmost Rmin(s)i−1, then stop; otherwise,

replace each Rmin(s)i that is between the leftmost m and the rightmost Rmin(s)i by
an m according to rule R1.

Example 6. For s = (0, 1, 2, 0, 1, 2, 4, 5, 2, 6, 3, 2, 1, 3, 7, 10) ∈ T5,3 ∩ A16, then after applying
the bijection g, we have g(s) = (0, 1, 2, 0, 1, 2, 4, 5, 2, 6, 3, 2, 2, 3, 7) which belongs to Case 2.
Then according to the steps in Case 2, m = 7 and

g(s)→ (0, 1, 2, 0, 1,2, 4, 5, 7, 2, 6, 3, 2,2, 3, 8)

→ (0, 1, 2, 0, 1,2, 4, 5, 7, 6, 3, 7, 7,2, 3, 8) = f∗5 (s).
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xi−1 xi xixi

no Masc

xi

#asc = m−1

all < m

xp−1

xi−1 xi mm

Masc

m

all ≤ m

x
′

p−1xi

y

y
′

xi−1 xi xi

no Masc < m

all

xi

with

≥ m

xi xp−1

xi−1 xi m

all ≤ m

m

Masc

m

> m

xi

z

z
′

z
′
= z + 1

≥ m

x
′

p−1

#asc = m−1

y

y
′

Figure 8.7. Case 2: the rightmost xi−1 is next to xi and no Masc appears
between the first two xi’s that are after xi−1. Here xi = Rmin(s)i with i =
rpos(s) and y′ = y + 1 if y ≥ m; otherwise y′ = y.

Case 3 (see Figure 8.8): if the rightmost Rmin(s)i−1 is not next to the entry Rmin(s)i and
the two rightmost Rmin(s)i’s are not next to each other, let m− 2 be the number of ascents
from the beginning s1 to the first Rmin(s)i after the rightmost Rmin(s)i−1, then

• insert Rmin(s)i immediately after the rightmost Rmin(s)i−1;
• if the second Rmin(s)i after the rightmost Rmin(s)i−1 is followed by exactly k non-

rightmost Rmin(s)i (k could be zero), then replace these (k + 1) identical entries
Rmin(s)i by (k + 1) identical m;
• replace all entries y after the rightmost inserted m by y + 1 if y ≥ m;
• substitute each Rmin(s)i that is between the leftmost m and the rightmost Rmin(s)i

by an m according to rule R2.

xi−1 xixi xi

#asc = m−2 all < m

xp−1�= ∅ z

xi−1 m

�= ∅

xi

Masc

mz xi

all ≤ m

xp−1

xi−1 xixi xi

#asc = m−2 < m xp−1

�= ∅ z

≥ m

xi−1 xim m xp−1

�= ∅

zxi

all with

Masc

xi

m

with
> m≤ m

all

y

y
′

z < m

Figure 8.8. Case 3: the rightmost xi−1 is not next to xi and the two rightmost
xi’s are not next to each other. Here xi = Rmin(s)i with i = rpos(s), z < m
and y′ = y + 1 if y ≥ m; otherwise y′ = y.

Example 7. For s = (0, 1, 2, 0, 1, 3, 2, 5, 5, 2, 7, 3, 1, 3, 8) ∈ T5,3 ∩ A15, then by applying bijec-
tion g, we obtain g(s) = (0, 1, 2, 0, 1, 3, 2, 5, 5, 2, 7, 3, 2, 3) which belongs to Case 3. According
to the construction of g5,3 for Case 3, we have m = 6 and

g(s)→ (0, 1, 2, 0, 1,2, 3,2, 5, 5,2, 8, 3,2, 3)

→ (0, 1, 2, 0, 1,2, 3, 6, 5, 5, 8, 6, 3,2, 3) = f∗5 (s).

Case 4 (see Figure 8.9): if the rightmost Rmin(s)i−1 is not next to the entry Rmin(s)i and
the two rightmost Rmin(s)i are next to each other, let m− 2 be the number of ascents from
the beginning to the rightmost Rmin(s)i−1, then, assuming that exactly (k + 1) rightmost
Rmin(s)i are next to each other (k ≥ 1), we
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• remove k rightmost Rmin(s)i;
• insert two integers Rmin(s)im immediately after the rightmost Rmin(s)i−1;
• replace all entries y after the inserted m by y + 1 if y ≥ m;
• substitute each non-rightmost Rmin(s)i that are between the leftmost m and the

rightmost Rmin(s)i by an m according to rule R2;
• insert (k − 1) m’s immediately after the leftmost m.

xi−1 xixi xi

#asc=m-2 all < m

xp−1

�= ∅

z xi

xi−1 m m

#asc=m-2

x
′
p−1zs1 xixi m

all ≤ m

y

y′

xi−1 xixi xi

#asc=m-2 < m

xp−1

�= ∅

zs1 xi

y
all with

≥ m

xi−1 m m

#asc=m-2

x
′
p−1zs1 xixi m

y′

< m
all with

> m

Masc Masc

s1

z < m

Figure 8.9. Case 4: the rightmost xi−1 is not next to xi and the two rightmost
xi’s are next to each other. Here xi = Rmin(s)i with i = rpos(s), z < m and
y′ = y + 1 if y ≥ m; otherwise y′ = y.

Example 8. For s = (0, 1, 2, 0, 1, 3, 2, 5, 5, 2, 7, 3, 2, 1, 3, 8) ∈ T5,3∩A16, then by applying bijec-
tion g, we obtain g(s) = (0, 1, 2, 0, 1, 3, 2, 5, 5, 2, 7, 3, 2, 2, 3) which belongs to Case 4. According
to the construction of g5,3 for Case 4, we have m = 5 and

g(s)→ (0, 1, 2, 0, 1,2, 5, 3, 2, 6, 6, 2, 8, 3,2, 3)

→ (0, 1, 2, 0, 1,2, 5, 3, 6, 6, 5, 5, 8, 3,2, 3) = f∗5 (s).

By the construction of g5,3(s) (see (8.1)), one can readily see that g5,3(s) ∈ B1. It remains to
show that g5,3 is a bijection.

For any ascent sequence ŝ ∈ B1 with rpos(ŝ) = i 6= 0 and minMasc(ŝ) = m̂, if all entries
between the two rightmost Rmin(ŝ)i are less than or equal to m̂, then ŝ is produced from

• Case 2 if the last m̂ is next to the rightmost Rmin(ŝ)i (see the left one of Figure 8.7);
• Case 3 otherwise if the first m̂ is not next to Rmin(ŝ)i (see the left one of Figure 8.8);
• Case 4 otherwise (see the left one of Figure 8.9).

If there exists an entry that is greater than m̂ and appears between the two rightmost Rmin(ŝ)i,
then ŝ comes from

• Case 1 if the leftmost m̂ is followed by m̂+ 1 (see Figure 8.6);
• Case 2 otherwise if the first entry that is greater than m̂ appears immediately after a

non-leftmost m̂ (see the right one of Figure 8.7);
• Case 3 otherwise if the first m̂ is not next to Rmin(ŝ)i (see the right one of Figure 8.8);
• Case 4 otherwise (see the right one of Figure 8.9).

This implies that g5,3 is surjective. Since all steps in all cases including the substitution
rules R1 and R2 are reversible, the map g5,3 is therefore injective. In consequence, g5,3 is a
bijection, implying the composition g5,3 ◦ g is the desired bijection f∗5 when restricted to the
set T5,3 ∩An.

Regarding the statistics, the bijection g5,3 sends (asc, rep, rmin, rpos) to (asc−1, rep, rmin, rpos).
Only when rpos(s) = 0, zero(f5,3(s)) = zero(s)+1. In analogy to Lemma 12, one can examine
the change of statistics max and ealm. �
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We next turn to introduce the bijection for the subset T5,4 where two insertion rules R3,R4

to modify the set of right-to-left minima are needed.

8.4. Two insertion rules.

Lemma 27. Proposition 25 is true when f∗5 is restricted between T5,4∩An and the set B−B1 of
ascent sequences s from B (defined in Proposition 25) where the non-zero integer minMasc(s)
also appears after the rightmost Rmin(s)rpos(s).

We prove Lemma 27 right after the rules R3 and R4 are defined.
Rule R3: For any ascent sequence s, let m be an Masc of s that appears only once and it

is not a right-to-left minimum, set

κ := max{l : Rmin(s)l ≤ m− 1}, (8.2)

we will insert an m to s so that m becomes a new right-to-left minimum.

• If κ = rmin(s) − 1, i.e., the last right-to-left minimum Rmin(s)κ (or equivalently the
last entry) is smaller than m, then we add m at the end of s; otherwise, we replace
the rightmost Rmin(s)κ+1 by m, replace the rightmost Rmin(s)r+1 by Rmin(s)r for
κ+ 1 ≤ r ≤ rmin(s)− 2 and add Rmin(s)rmin(s)−1 at the end.

xp−1

xp−1

m

or

or

xκ xκ+1

xκ m

xκ+2

xκ+1

xp−2 xp−1

xp−3 xp−2

xp−1

xκ xκ+1 xκ+2 xj−1 xj

�= ∅

min = xj

xκ m xκ+1 xj−2 xj−1

�= ∅

min < xj+1

xj+1

xj+1

R3 R4

Figure 8.10. The insertion rules R3 and R4 where xi = Rmin(s)i, rmin(s) =
p, rpos(s) = j and κ is the maximal index such that xκ ≤ m− 1.

Rule R4: in addition to the conditions of Rule R3, here we also required that κ < rpos(s).
We insert an m and remove the rightmost Rmin(s)rpos(s) so that m is a new right-to-left min-
imum. This is achieved by replacing the rightmost Rmin(s)κ+1 by m, replacing the rightmost
Rmin(s)r+1 by Rmin(s)r for κ+ 1 ≤ r ≤ rpos(s)− 1.

We are now ready to prove Lemma 27.

Proof. For any ascent sequence s ∈ T5,4, we distinguish three cases according to the location of
the first Masc after the rightmost Rmin(s)rpos(s). For the first two cases, the map s 7→ f5,4(s)
is explicitly defined, based on which the map s 7→ f5,4(s) for the remaining case is recursively
constructed.

Case 1 (see Figure 8.11): if the first Masc after the rightmost Rmin(s)rpos(s) is a right-to-left
minimum, we then implement the following Step 1 on the pair (s, rpos(s)) to construct a new
sequence f5,4(s) ∈ B−B1.

Step 1 (see Figure 8.11):
For any pair (s, u) where s ∈ T5,4 and u ≤ rpos(s), assume that the rightmost Rmin(s)j is

the first Masc after the rightmost Rmin(s)rpos(s), then
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• remove all entries after the rightmost Rmin(s)j−1;
(All removed entries form an increasing sequence of Masc’s of s.)
• remove the rightmost Rmin(s)rpos(s);

(The removal increases the value of the rpos-statistic by one, guaranteeing that the
application of g5,3 in the following operation is permissible.)
• if u = rpos(s), apply the bijection g5,3 (see (8.1));
• let m equal the minimal Masc between the two rightmost Rmin(s)u+1, and insert m

according to rule R3;
(This operation inserts m after the rightmost Rmin(s)u+1, yielding a sequence belong-
ing to the image set B−B1.)
• for all t such that u+2 ≤ t ≤ κ (defined in (8.2)), replace each non-rightmost Rmin(s)t

entry that is located after Rmin(s)t−1 by an m according to rule R1;
(This substitution ensures that the value of the rpos-statistic is always u+ 1.)
• add (rmin(s)− j − 1) Masc’s at the end

(in order to preserve the statistics asc, rep, rmin).

Define f5,4(s) to be the resulting sequence after applying Step 1 to the pair (s, rpos(s)).

xi xi

s:
xi+1�= ∅

min= xi+1

xj−1

no Masc

xj xp−1

xi xi+1

min= xi+1

xj−1�= ∅
s∗:

xi xi+1 xj−1

g5,3(s
∗):

xi+1

minMasc = m without m

xi xi+1 xj−1

f5,4(s):
xi+1

minMasc = m

xk m xp−1

xj+1

Figure 8.11. The construction of s 7→ f5,4(s) for case 1 when the first
Masc after the rightmost xi is a right-to-left minimum. Here xl = Rmin(s)l,
i = rpos(s) and rmin(s) = p.

Example 9. For s = (0, 1, 2, 0, 1, 2, 4, 5, 2, 1, 2, 4, 3, 9, 10) ∈ T5,4 ∩ A15, rpos(s) = 1 and the
first Masc after the rightmost 1 is 9. We are going to apply Step 1 on the pair (s, 1):

s→ (0, 1, 2, 0, 1, 2, 4, 5, 2, 1, 2, 4, 3)→ (0, 1, 2, 0, 1, 2, 4, 5, 2, 2, 4, 3)
g5,3−−→ (0, 1, 2, 0, 1, 2, 4, 5, 7, 7, 2, 4, 3)

and m = 7. Then apply the rule R3, leading to (0, 1, 2, 0, 1, 2, 4, 5, 7, 7, 2, 4, 3, 7). Finally add
one Masc at the end and yield

f5,4(s) = (0, 1, 2, 0, 1, 2, 4, 5, 7, 7, 2, 4, 3, 7, 10).

Case 2 (see Figure 8.12): if the first Masc after the rightmost Rmin(s)rpos(s) appears exclu-
sively between two right-to-left minima, then we implement Step 2 on the pair (s, rpos(s)) to
construct a new sequence f5,4(s) ∈ B−B1.

Step 2 (see Figure 8.12):
For any pair (s, u) where s ∈ T5,4 and u ≤ rpos(s), assume the first Masc after the rightmost

Rmin(s)rpos(s) appears exclusively between the rightmost Rmin(s)j−1 and Rmin(s)j , then

• remove the rightmost Rmin(s)rpos(s);
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• add Rmin(s)j right after the rightmost Rmin(s)j−1;
(The first two operations allow us to separate the sequence into two parts and apply
the bijections g5,3 and g−15,3 both locally and globally in the following steps.)

• if u = rpos(s), then separate the sequence right after the rightmost Rmin(s)j−1; apply
g5,3 (see (8.1)) to the left part, then let m be the minimal Masc of the resulting left
part; replace all entries y from the right part by y + 1 if y ≥ m; afterwards put these
two parts back together. Otherwise if u 6= rpos(s), then let m be the minimal Masc
between the two rightmost Rmin(s)u+1.
• apply g−15,3 to the entire sequence;

(This produces a sequence without entry m after the rightmost Rmin(s)u+1 and the
next two operations will insert entry m after it, leading to a sequence from the image
set B−B1.)
• If κ < j (κ is defined in (8.2)), then insert m according to rule R4;
• for all t such that u+ 2 ≤ t ≤ κ, replace every non-rightmost Rmin(s)t that is located

after the rightmost Rmin(s)t−1 by an m according to rule R1.

Define f5,4(s) to be the resulting sequence after applying Step 2 to the pair (s, rpos(s)).
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′
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′
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Figure 8.12. The construction s 7→ f5,4(s) for Case 2. Here rmin(s) = p,
xl = Rmin(s)l with i = rpos(s) and y′ = y + 1 if y ≥ m; otherwise y = y′.

Example 10. For s = (0, 1, 2, 0, 1, 2, 4, 5, 2, 1, 2, 4, 3, 9, 4) ∈ T5,4 ∩ A15, rpos(s) = 1 and the
first Masc after the rightmost 1 is 9. It is located between two right-to-left minima 3 and 4.
We are going to apply Step 2 on the pair (s, 1):

s→ (0, 1, 2, 0, 1, 2, 4, 5, 2, 2, 4, 3, 4, 9, 4).

We split this sequence after the rightmost 3. Applying the bijection g5,3 on the left part leads
to a sequence (0, 1, 2, 0, 1, 2, 4, 5, 7, 7, 2, 4, 3) and m = 7. Then the right part (4, 9, 4) becomes
(4, 10, 4) because every element is increased by 1 if it is at least 7. Combining these two parts
again yield

(0, 1, 2, 0, 1, 2, 4, 5, 7, 7, 2, 4, 3, 4, 10, 4).
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Then apply g−15,3 on the entire sequence, we get (0, 1, 2, 0, 1, 2, 4, 5, 7, 7, 2, 4, 3, 4, 4). Finally
apply the rule R1 to replace non-rightmost 4 by 7 and result an ascent sequence

f5,4(s) = (0, 1, 2, 0, 1, 2, 4, 5, 7, 7, 2, 4, 3, 7, 4).

We next show the image sets of f5,4 for Case 1 and Case 2 are disjoint.
For any ŝ ∈ B−B1 with m = minMasc(ŝ), we divide B−B1 into two disjoint subsets C1

and C2: C1 contains all ascent sequence ŝ ∈ B−B1 satisfying the following conditions:

• m is a right-to-left minimum, say the (k + 1)th right-to-left minimum;
• either rightmost Rmin(ŝ)t−1 and Rmin(ŝ)t are next to each other or the minimal entry

in between is greater than or equal to Rmin(ŝ)t+1 for all k + 1 ≤ t ≤ rmin(ŝ)− 1.

Let C2 := B−B1 − C1.
By the construction of f5,4(s) in Case 1–2, it is clear that the image set of f5,4(s) for Case

1 is a subset of C1, while the one for Case 2 is a subset of C2. Together with the fact that
all steps are reversible, it follows that f5,4 is injective for these two cases, from which we will
recursively define the map f5,4 for the remaining case.

First note that for any s ∈ T5,4, rmin(s) − rpos(s) ≥ 3. For the starting case rmin(s) −
rpos(s) = 3, s belongs to Case 1 or 2. Since the image set of f5,4(s) when rmin(s)− rpos(s) = 3
is exactly C1∪̇ C2 and f5,4 is injective for these two cases, f5,4 is a bijection when rmin(s) −
rpos(s) = 3.

Next assuming that there is a bijection f5,4 : T5,4 ∩An → C1∪̇ C2 for all ascent sequences s
with rmin(s)−rpos(s) ≤ N , we will construct the map f5,4 for the ones with rmin(s)−rpos(s) =
N + 1 and prove it is a bijection.

For any ascent sequence s ∈ T5,4 with rmin(s)− rpos(s) = N + 1, if s belongs to case 1 or 2,
then f5,4(s) is already given and we stop; otherwise s must belong to the following case and
a new sequence f5,4(s) ∈ C1∪̇ C2 will be defined.

Case 3 (see Figure 8.13): if the first Masc after the rightmost Rmin(s)rpos(s) appears not
only between two right-to-left minima, but also afterwards, then we implement the following
step on the pair (s, rpos(s)) to produce a new sequence f5,4(s).

Step 3 (see Figure 8.13):
For any pair (s, u) where s ∈ T5,4 and u ≤ rpos(s), assume that the first Masc after the

rightmost Rmin(s)rpos(s) appears between the rightmost Rmin(s)j−1 and Rmin(s)j , as well as
after the rightmost Rmin(s)j , then

• do the first three sub-steps (the first three black points) of Step 2;
• apply f−15,4 according to induction hypothesis and let s• denote the resulting sequence;

• if s• belongs to Case 1, do Step 1 on the pair (s•, rpos(s)) and then stop;
• if s• belongs to Case 2, do Step 2 on the pair (s•, rpos(s)) and then stop;
• otherwise repeat Step 3 on the pair (s•, rpos(s)).

Define f5,4(s) to be the resulting sequence after applying Step 3 to the pair (s, rpos(s)).
According to the construction of f5,4 for Case 3, it is clear that f5,4(s) ∈ C1∪̇ C2. According

to the induction hypothesis, it remains to prove that the map f5,4 is a bijection for all s ∈ T5,4
such that rmin(s)− rpos(s) = N + 1.

For any ŝ ∈ B− B1 = C1∪̇ C2 with minMasc(ŝ) = m and rmin(ŝ)− rpos(ŝ) = N , then the
sequence ŝ is generated from

• Step 1 if ŝ ∈ C1;
• Step 2 if ŝ ∈ C2;
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Figure 8.13. The construction of s 7→ s• for Case 3 and we repeat Steps 1–3
on the pair (s•, rpos(s)) where rpos(s) = i.

Since all Steps 1–3 including rules R1,R3,R4 are recursively reversible, we apply Step i in
reverse order to ŝ if ŝ ∈ Ci and obtain a pair (s•, u) with s• ∈ T5,4 and u = rpos(ŝ) − 1. If

u = rpos(s•), then we stop and s• = f−15,4 (ŝ) with rmin(s•) − rpos(s•) = N + 1; otherwise

u < rpos(s•), we implement Step 3 in reverse order on s• (allowed by induction hypothesis)
until a pair (s, rpos(s)) is produced with s = f−15,4 (ŝ) satisfying rmin(s) − rpos(s) = N + 1.
This implies that the map f5,4 is surjective and injective, that is f5,4 is the desired bijection
f∗5 (defined in Proposition 25) when restricted to the set T5,4 ∩An. This completes the proof
of Lemma 27. �

Example 11. Given s• = (0, 1, 2, 0, 1, 2, 5,2, 3,2, 3, 8, 8, 4) ∈ T5,4 with rpos(s•) = 2, s• be-
longs to Case 2, so we implement Step 2 on the pair (s•, 2) as follows:

s• = (0, 1, 2, 0, 1, 2, 5,2, 3,2, 3, 8, 8, 4)

→ (0, 1, 2, 0, 1, 2, 5, 2, 3, 3,4, 8, 8,4),

then apply the bijection g5,3 from (8.1) to the prefix (0, 1, 2, 0, 1, 2, 5, 2, 3, 3) and obtain

g5,3((0, 1, 2, 0, 1, 2, 5, 2,3,3)) = (0, 1, 2, 0, 1, 2, 5, 2,3, 7,3).

Add the subsequence (4, 9, 9, 4) at the end, where (4, 9, 9, 4) is obtained by increasing each
entry of (4, 8, 8, 4) by one if it is larger than or equal to m = 7. This leads to the ascent
sequence

(0, 1, 2, 0, 1, 2, 5, 2, 3, 7, 3,4, 9, 9,4) ∈ B1.

Next after applying the inverse bijection g−15,3, it becomes

g−15,3((0, 1, 2, 0, 1, 2, 5, 2, 3, 7, 3,4, 9, 9,4)) = (0, 1, 2, 0, 1, 2, 5, 2, 3, 7, 3, 4,4,4).

Finally substitute non-rightmost entries 4 by 7 according to R1 and

f∗5 (s•) = f5,4(s
•) = (0, 1, 2, 0, 1, 2, 5, 2,3, 7,3, 7, 7, 4) ∈ B−B1.

Example 12. Given s = (0, 1, 2, 0,1, 2,1, 2, 6, 3, 6, 6, 4) ∈ T5,4 with rpos(s) = 1 and rmin(s) =
5. Since s belongs to Case 3, we implement Step 3 on the pair (s, 1) as follows:

s = (0, 1, 2, 0,1, 2,1, 2, 6, 3, 6, 6, 4)

→ (0, 1, 2, 0, 1, 2, 2,3, 6,3, 6, 6, 4);
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then apply the bijection g5,3 from (8.1) to the subsequence (0, 1, 2, 0, 1, 2, 2), yielding

g5,3((0, 1, 2, 0, 1, 2, 2)) = (0, 1, 2, 0, 1, 2, 5, 2);

attach the subsequence (3, 7,3, 7, 7, 4) at the end, where (3, 7,3, 7, 7, 4) comes from replacing
each entry y of (3, 6,3, 6, 6, 4) by y + 1 if y ≥ m = 5. Now the ascent sequence becomes

(0, 1, 2, 0, 1, 2, 5, 2,3, 7,3, 7, 7, 4) ∈ B−B1;

next apply the bijection f−15,4 (by induction hypothesis) and it is known from Example 11 that

f−15,4 (0, 1, 2, 0, 1, 2, 5, 2,3, 7,3, 7, 7, 4) = (0, 1, 2, 0, 1, 2, 5,2, 3,2, 3, 8, 8, 4) = s•.

Since s• belongs to Case 2, we implement Step 2 on the pair (s•, 1) and get

(0, 1, 2, 0, 1, 2, 5,2, 3,2, 3, 8, 8,4)→ (0, 1, 2, 0, 1, 2, 5, 2, 3, 3,4, 8, 8,4)

→ (0, 1, 2, 0, 1, 2, 5, 2, 3, 3,4, 4,4)

→ (0, 1, 2, 0, 1, 2, 5, 2, 5, 3,5, 5,4) = f5,4(s) = f∗5 (s).

9. Final remarks

It is worthwhile to mention that an explicit formula for the refined generating function of
the five Euler–Stirling statistics asc, rep, zero,max, rmin on ascent sequences can be derived
from (6.7) and (6.8). We have the following result:

Theorem 28. Let r = t(x + u − xu). The refined generating function for the quintuple
(asc, rep, zero,max, rmin) of Euler–Stirling statistics on ascent sequences is

G(t;x, y, u, z, v) :=
∞∑
n=1

tn
∑
s∈An

xrep(s)ymax(s)uasc(s)zzero(s)vrmin(s) =
vytz

1− vytu

+
∞∑
k=0

yr2vxz(tuv + z(r − tuv)− tuv(1− z)(1− yr)(1− r)k)(1− yr)(1− r)k

(x− ux+ u(1− yr)(1− r)k)(r − tuv + tuv(1− yr)(1− r)k+1)(x− u(x− 1)(1− yr)(1− r)k)

×
k−1∏
i=0

x− x(1− rz)(1− yr)(1− r)i

x− u(x− 1)(1− yr)(1− r)i

+

∞∑
k=0

yr2u2vtz(1− v)(tuv + z(r − tuv)− tuv(1− z)(1− yr)(1− r)k)(1− yr)(1− r)k

(x− xu+ u(1− yr)(1− r)k)(r − tuv + tuv(1− yr)(1− r)k+1)(r − tuv + tuv(1− yr)(1− r)k)

×
∞∑
m=k

rv(1− yr)(1− r)m

(x− xu+ u(1− yr)(1− r)m)

×
m∏
i=k

x(1− (1− yr)(1− r)i)(x− xu+ u(1− yr)(1− r)i)
(x− u(x− 1)(1− yr)(1− r)i)(x− xu+ u(1− rv)(1− yr)(1− r)i)

×
k−1∏
j=0

x− x(1− rz)(1− yr)(1− r)j

x− u(x− 1)(1− yr)(1− r)j
. (9.1)

Proof. Note that an equivalent form of (6.7) is

F (t;x, y, 1, u, z, v) =
tx(y − yzr + z)F (t;x, y − yr + 1, 1, u, z, v)

(tux+ y−1 − tu)(y − yr + 1)
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− txz(ytuv(1− z) + z)

tux+ y−1 − tu
F (t;x, y − yr + 1, 1, u, 1, v)

+ z(ytuv(1− z) + z)F (t;x, y, 1, u, 1, v).

Since the last two items contain a common factor z(ytuv(1− z) + z), let

H(t;x, y, 1, u, z, v) : = F (t;x, y, 1, u, z, v)− tx(y − yzr + z)F (t;x, y − yr + 1, 1, u, z, v)

(tux+ y−1 − tu)(y − yr + 1)
.

Then, the previous equation becomes

H(t;x, y, 1, u, z, v) = z(ytuv(1− z) + z)H(t;x, y, 1, u, 1, v).

F (t;x, y, 1, u, z, v) =
tx(y − yzr + z)F (t;x, y − yr + 1, 1, u, z, v)

(tux+ y−1 − tu)(y − yr + 1)

+ z(ytuv(1− z) + z)H(t;x, y, 1, u, 1, v).

Consequently (6.7) can be rewritten as

H(t;x, y, 1, u, 1, v) =
xvt2(1− yr)

(1− ytu)(1− tuv(y − yr + 1))(tux+ y−1 − tu)

+
yu2vt2(1− v)(1− yr)

(1− ytu)(1− tuv(y − yr + 1))
F (t;x, y, 1, u, 1, v). (9.2)

By iterating the above equation, we find that, with δm = r−1 − r−1(1− yr)(1− r)m,

F (t;x, y, 1, u, z, v)

=

∞∑
k=0

z(δktuv(1− z) + z)H(t;x, δk, 1, u, 1, v)

k−1∏
i=0

tx(δi − δizr + z)

(tux+ δ−1i − tu)(δi − δir + 1)
.

Substituting H(t;x, δk, 1, u, 1, v) by the right-hand-side of (9.2) and then plugging (6.8) into
the equation (after setting y = δk), we obtain the formula for the generating function in
(9.1). �

Remark 8. Neither of the generating function formulas in (1.6) or in (1.12) is a direct spe-
cialization of the formula (9.1), although equivalent forms of the two former formulas can be
obtained by setting v = 1, respectively z = 1, in the latter one.

The formula (9.1) for the generating function G(t;x, y, u, z, v) is of theoretical interest; it
is explicit but unfortunately rather complicated. It seems very difficult to apply this formula
in order to prove equidistribution results by pure algebraic means (i.e., manipulations of
series), although we know that G(t;x, y, u, z, v) = G(t;x, v, u, z, y) holds, as a consequence of
Theorem 4.

Open Problem 1. Find a simpler form of the generating function G(t;x, y, u, z, v) so that
G(t;x, y, u, z) and G(t;x, y, u, v) (given in Theorems 2 and 6) are straightforward specializa-
tions of G(t;x, y, u, z, v) at v = 1 and z = 1, respectively. Furthermore, prove the symmetry
G(t;x, y, u, z, v) = G(t;x, v, u, z, y) by transformations of basic hypergeometric series.

We finally pose a conjecture on a symmetric equidistribution of Euler–Stirling statistics on
inversion sequences, which is analogous to Theorem 4 but with the two statistics ealm, rpos
being removed, and An (the set of ascent sequences) being replaced by In (the set of inversion
sequences).
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Conjecture 29. There is a bijection Ω : In → In such that for all s ∈ In,

(asc, rep, zero,max, rmin)s = (asc, rep, zero, rmin,max)Ω(s).

Consequently for all π ∈ Sn,

(des, iasc, lmax, lmin, rmax)π = (des, iasc, lmax, rmax, lmin)(b−1 ◦ Ω ◦ b)(π),

where b : Sn → In is a bijection due to Baril and Vajnovszki (see Theorem 1 of [3]).

This has been verified by Maple up to n = 10. Different from ascent sequences, a gen-
erating function formula for the quadruple (asc, rep, zero,max) of Euler–Stirling statistics on
inversion sequences remains unknown, but one for the pair (asc, rep) of Eulerian statistics was
established by Garsia and Gessel [14]: In view of (1.4), let

Bn(u, x) :=
∑
s∈In

uasc(s)xrep(s) =
∑
π∈Sn

udes(π)xiasc(π),

Hn(u, x) :=
∑
s∈In

uasc(s)xn−1−rep(s) =
∑
π∈Sn

udes(π)xn−1−iasc(π).

Then

Bn(u, x) = xn−1Hn(u, x−1),

and there holds ∑
n≥0

Hn(u, x) tn

(1− u)n+1(1− x)n+1
=
∑
k≥1

∑
m≥1

uk−1xm−1

(1− t)km
, (9.3)

which implies Hn(u, x) = Hn(x, u), or equivalently, Bn(u, x) = Bn(x, u) (see also (1.3)). One
possible approach to solve Conjecture 29 is to deduce an extension of (9.3) by including
the Stirling statistics zero,max, rmin and to read the symmetry directly from the extended
generating function formula.

While Theorem 3 holds if An is replaced by In (see the following Proposition 30 which is a
direct result of a bijection due to Baril and Vajnovszki [3]), it currently seems that the proof
of Theorem 4 cannot be modified to affirm Conjecture 29.

Proposition 30. There is a bijection % : In → In such that for any s ∈ In,

(asc, rep, zero,max)s = (rep, asc, rmin, zero)%(s).

Proof. Baril and Vajnovszki (see Theorem 1 of [3]) constructed a bijection b : Sn → In
satisfying that for any τ ∈ Sn,

(des, iasc, lmin, lmax, rmax)τ = (asc, rep,max, zero, rmin)b(τ).

Let τ c = (n+ 1− τ1)(n+ 1− τ2) · · · (n+ 1− τn) be the complement of τ , then for any s ∈ In,
let τ = b−1(s) and we have

(asc, rep, zero,max)s = (des, iasc, lmax, lmin)b−1(s)

= (des, iasc, lmax, lmin)τ

= (iasc, des, rmax, lmax)(τ−1)c

= (rep, asc, rmin, zero) b((τ−1)c),

that is, by defining %(s) = b((τ−1)c) the proof is complete. �
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If Conjecture 29 is true, then it follows from Proposition 30 that Conjecture 1 also holds if
An is replaced by In.
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