OUTSIDE NESTED DECOMPOSITIONS OF SKEW DIAGRAMS AND
SCHUR FUNCTION DETERMINANTS

EMMA YU JIN

ABSTRACT. We describe the thickened strips and introduce the outside nested decompo-
sitions of any skew shape A/p. For any such decomposition & = (01,02,...,0,) of the
skew shape A/u where ©; is a thickened strip for every i, let  be the number of boxes
that are contained in any two distinct thickened strips of ®. Then we establish a deter-
minantal formula of the function pi-(X)sy,,(X) with the Schur functions of thickened
strips as entries, where sy, (X) is the Schur function of the skew shape A/ and py-(X) is
the power sum symmetric function indexed by the partition (17). This generalizes Hamel
and Goulden’s theorem on the outside decompositions of the skew shape A/u and our
extension is motivated by the enumeration of m-strip tableaux, which was first counted
by Baryshnikov and Romik via extending the transfer operator approach due to Elkies.

1. INTRODUCTION AND MAIN RESULTS

One of the most fundamental results on the symmetric functions is the determinantal
expression of the Schur function s/, (X) for any skew shape A/ju; see [11, 13]. The Jacobi-
Trudi determinant [9, 6] and its dual [11, 6], the Giambelli determinant [5, 15] as well as
the Lascoux and Pragacz’s rim ribbon determinant [10, 16] are all of this kind. Hamel
and Goulden [8] remarkably found that all above mentioned determinants for the Schur
function s),,(X) can be unified through the concept of outside decompositions of the skew
shape A/ pu.

In what follows all definitions will be postponed until subsection 1.3 and we first present
Hamel and Goulden’s theorem (Theorem 1).

Theorem 1 ([8]). If the skew diagram of A/ is edgewise connected. Then, for any outside
decomposition ¢ = (01,02, ...,0,) of the skew shape N/, it holds that

(1'1) SA/M(X) = det[SQi#Qj (X)]Zj:b
where s5(X) = 1 and sg,49,(X) = 0 if 0;70; is undefined.

Their proof is based on a lattice path construction and the Lindstrom-Gessel-Viennot
methodology [6, 15]. In this paper we generalize the concept of outside decompositions
even further, which is motivated by the enumeration of m-strip tableaux in [2].

When m = 2k, the enumeration of 2k-strip tableaux is a direct consequence of the Las-
coux and Pragacz’s rim ribbon determinant [10, 16], or more broadly, Hamel and Goulden’s
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theorem (Theorem 1). However, when m = 2k + 1, any outside decomposition of (2k + 1)-
strip diagram with n columns consists of at least n strips (see subsection 3.2.2). So the
order of the Jacobi-Trudi determinantal expression of s),,(X) can not be further reduced
by applying Hamel and Goulden’s theorem (Theorem 1). This motivates us to extend
Hamel and Goulden’s theorem.

1.1. Our main results. We introduce the concept of outside nested decompositions of the
skew shape \/u and our first main result is a generalization of Theorem 1 with respect to
any outside nested decomposition ® = (01, 0,,...,0,) of the skew shape \/p.

For any such decomposition ® = (01, 0,,...,0,) of the skew shape \/u where ©; is a
thickened strip for every i, if r is the number of boxes that are contained in two distinct
thickened strips of ®. Then, our main theorem provides a determinantal formula of the
function pi-(X)sy,,(X) with the Schur functions of thickened strips as entries. The precise
statement is the following.

Theorem 2. If the skew diagram of A/ is edgewise connected. Then, for any outside
nested decomposition ® = (01,0a,...,0,) of the skew shape N/, we set r=>"7_,10;| —
|/ | that is the number of common special corners of ® and we have
(1.2) p1r(X) sx/u(X) = detlse,p0,(X)]] =, where p1r(X) = (Z z;)",

i=1
55(X) = 1 and se,40,(X) = 0 if ©;#0; is undefined. The function pi-(X) is the power
sum symmetric function indexed by the partition (17) and p1-(X) =1 if r = 0.

When r = 0 and all thickened strips ©; are strips, we retrieve Hamel and Goulden’s
theorem on the outside decompositions of the skew shape \/u. With the help of Theorem 2,
it suffices to find an outside nested decomposition with minimal number of thickened strips
in order to reduce the order of the determinantal expression of the Schur function sy, (X).

Let |A\/u| and f** denote the number of boxes contained in the skew shape \/u and
the number of standard Young tableaux of shape A\/u with the entries from 1 to |A/p|
(similarly for |©;#0;| and f©#©i). Then, by applying the exponential specialization on
both sides of (1.2), one immediately gets

Corollary 3. If the skew diagram of \/j is edgewise connected. Then, for any outside
nested decomposition ® = (01,0,...,0,) of the skew shape N/, we have
(1.3) P =M plt det [(ag )T OFONT. L where ai; = |O46;],

f2 =1 and fO#% =0 if ©,#0; is undefined.

Note that the parameter r vanishes in (1.3).

Our second main result is an enumeration of m-strip tableaux by applying Corollary 3,
which provides another proof of Baryshnikov and Romik’s results in [2]. Baryshnikov and
Romik [2] counted m-strip tableaux via extending the transfer operator approach due to
Elkies [4]. In their proof, it is of central importance that the transfer operator for m-
strip tableaux can be diagonalized; see Theorem 6,10,11 in [2]. We believe that such
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diagonalization of the transfer operator is in general closely related to the outside nested
decompositions of the skew shape.

To prove Theorem 2, we use the bijection from semistandard Young tableaux to non-
intersecting lattice paths in [8] and Stembridge’s theorem [15] on non-intersecting lattice
paths (which developed Lindstrom-Gessel-Viennot’s approach). More precisely, our proof
consists of three main steps:

semistandard Young tableaux — separable double lattice paths — involution.

In the first step we build a one-to-one correspondence between semistandard Young tableaux
of thickened strip shape and double lattice paths. In the second step we introduce the sepa-
rable sequences of double lattice paths and show that the generating function of all weighted
separable sequences of double lattice paths is pi-(X)sy/,(X). In the last step we construct a
sign-reversing and weight-preserving involution f on all non-separable sequences of double
lattice paths, so that only the separable ones contribute to the determinant det[se, 46, (X)]
in Theorem 2.

It turns out that thickened strips are the mazimal small skew shapes such that the lattice
path approach could work perfectly to establish a determinantal formula of Schur function.
Furthermore, the proof from strips and outside decompositions respectively to thickened
strips and outside nested decompositions works equally well for symplectic and orthogonal
Schur functions, which are defined combinatorially in a manner similar to Schur functions.
The determinantal formulas for symplectic and orthogonal Schur functions with respect to
any outside decomposition have been discussed by Hamel in [7].

1.2. Paper outline. In subsection 1.3 and 1.4 we introduce all necessary notations and
definitions. In Section 2 we prove Theorem 2 and Corollary 3. In Section 3 we introduce
the notion of m-strip tableaux and count the number of m-strip tableaux.

1.3. Partitions and symmetric functions.

e A partition A of n, denoted by A\ F n, is a sequence A = (A1, \a, ..., Ay) of non-
negative integers such that \y > Ay > --- > )\, > 0 and their sum is n. The
non-zero \; are called the parts of A and the number of parts is the length of A,
denoted by £(\).

e Given a partition A = (A1, Ao, ..., Ay ), the standard diagram of X is a left-justified
array of A\ + Ao+ -+ -+ A, boxes with A; in the first row, A\, in the second row, and
SO on.

o A skew diagram of \/u (also called a skew shape \/p) is the difference of two
standard diagrams where p C A. Note that the standard shape A is just the skew
shape A/ when p = @.

e The content of a box « in a skew shape A/u equals ¢ — s if the box « is in column
t from the left and row s from the top of the skew shape A\/u. We refer to box «
as box (s,t) and (s,t) is called its coordinate. A diagonal of content ¢ in a skew
diagram is a set of boxes with content ¢ in a skew diagram.

o A skew diagram ‘starts’ at a box (called the starting boz) if that box is the bottom-
most and leftmost box in the skew diagram, and a skew diagram ‘ends’ at a box
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(called the ending box) if that box is the topmost and rightmost box in the skew
diagram.

o A semistandard Young tableau (resp. standard Young tableau) of skew shape \/pu
is a filling of the boxes of the skew diagram of \/u with positive integers such that
the entries strictly increase down each column and weakly (resp. strictly) increase
left to right across each row.

In a semistandard Young tableau T we use T'(«) to represent the positive integer in the
box a of T'. The Schur function, sx;,(X), in the variables X = (1,22, ...), is given by

Sau(X) = Z H T7(a),

T aeX/p

where the summation is over all semistandard Young tableaux T of shape A/p and o € A/
means that « ranges over all boxes in the skew diagram of A\/u. In particular, sg(X) = 1.
The complete symmetric functions hy,(X) are defined by

ik
h(X)= > [ if k=1, ho(X)=1 and h(X) =0 if k <0.
1<y <+ <i, j=tia
The Jacobi-Trudi identity is a determinantal expression of Schur function sy, (X) in terms
of complete symmetric functions hy(X); see [11, 13].

Theorem 4 (Jacobi-Trudi identity [9]). Let /i be a skew shape partition, let A\ =
(A, Ak) and = (pa, - . ., pu) have at most k parts. Then

sa/u(X) = det[fn, ;o5 (X))

The classical Aitken formula for the number of standard Young tableaux of skew shape
can be directly obtained by applying the exponential specialization on the Jacobi-Trudi
identity; see Chapter 7 of [13]. We denote by |A/u| the number of boxes contained in the
skew diagram of A/ and denote by f** the number of standard Young tableaux of shape
A/ with the entries from 1 to [A/pl.

Corollary 5 (Aitken formula). Let A\/p be a skew shape partition, let A = (A1,..., Ax)
and p = (p1, - .., 1) have at most k parts. Then

a1k
(1.4) P =Ml det [( =y =i+ )7L

It is clear that the order of the determinant in the Jacobi-Trudi identity and in the
Aitken formula equals the number ¢()) of parts in A\. However, using (1.4) to compute
fM# becomes difficult when the partitions A and p are large, even when their difference
A/ is small.

1.4. Outside nested decompositions. We start with the strips and outside decompo-
sitions. Hamel and Goulden described the notion of an outside decomposition of the skew
shape A/u, which generalizes Lascoux and Pragacz’s rim ribbon decomposition [10]. With
the help of Hamel and Goulden’s theorem [8], for any skew shape A/u, one can reduce the
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order of the determinant in the Jacobi-Trudi identity to the number of strips contained in
any outside decomposition of skew shape A/ .

Two boxes are said to be edgewise connected if they share a common edge. A skew
diagram 6 is said to be edgewise connected if 0 is an edgewise connected set of boxes.

Definition 1.1 (strip). A skew diagram 6 is a strip if 6 is edgewise connected and it
contains no 2 x 2 blocks of boxes.

Remark 1.1. The strips in Definition 1.1 are called ‘border strips’ by Macdonald [11] and
are called ‘ribbons’ by Lascouz and Pragacz [10]. We adopt the name ‘strips’ from [8].

Definition 1.2 (outside decomposition [8]). Suppose that 6y, 65, ..., 0, are strips of a skew
diagram of A\/u and every strip has a starting box on the left or bottom perimeter of the
diagram and an ending box on the right or top perimeter of the diagram. Then we say
the totally ordered set ¢ = (6;,6s,...,60,) is an outside decomposition of A/p if the union
of these strips is the skew diagram of \/p and every two strips 6;,6; in ¢ are disjoint, that
is, 0; and 60; have no boxes in common.

Remark 1.2. The rim ribbon decomposition of \/u introduced by Lascoux and Pragacz
[10] is an outside decomposition with minimal number of strips; see [14] and [17].

Example 1. See Fig. 1.1 for an outside decomposition and two non-outside decompositions
where all boxes are marked by black dots. The first two decompositions in Fig. 1.1 are not
outside decompositions since the strip 01 = (5,1) of the left one has a starting box neither
on the left nor on the bottom perimeter of the skew diagram and the strip 0 = (3) of the
middle one has an ending box neither on the right nor on the top perimeter of the skew
diagram.
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FIGURE 1.1. Two non-outside decompositions (left and middle) and one
outside decomposition (right) of skew shape (8,6,6,2,1)/(3,2).

We next introduce the notion of thickened strips and we will decompose the skew diagram
of A/p into a sequence of thickened strips, in order to extend Hamel and Goulden’s theorem
8] on the determinantal expression of the Schur function sy, (X).

Definition 1.3 (thickened strip). A skew diagram © is a thickened strip if © is edgewise
connected and it neither contains a 3 x 2 block of boxes nor a 2 x 3 block of boxes.

Remark 1.3. By definition the only difference between strips and thickened strips is that
thickened strips could have some 2 x 2 blocks of boxes; see Fig. 1.2.



6 EMMA YU JIN

FIGURE 1.2. The left one is a thickened strip, while the middle one and the
right one are not thickened strips.

We next define the corners and the special corners of a thickened strip ©; because in
contrast to the outside decompositions, we allow two thickened strips in an outside nested
decomposition to have special corners in common. In what follows, note that the box (s, t)
always refers to the box with coordinate (s,t) in the skew diagram of \/pu.

Definition 1.4. (corner, special corner) When a thickened strip ©; has more than one
box, we define that a corner (s,t) of a thickened strip ©; is an upper corner or a lower
corner, where an upper corner (s,t) of ©; is a box (s, ) such that neither the box (s —1,t)
nor the box (s,¢— 1) is contained in ©;. Likewise, a lower corner (s,t) of ©; is a box (s, t)
such that neither the box (s+ 1,¢) nor the box (s,¢+ 1) is contained in ©,;. We say that a
corner (s,t) of a thickened strip ©; is special if the corner (s, t) satisfies one of the following
conditions:

(1) the corner (s,t) is the starting box or the ending box of ©;;
(2) the corner (s,t) is contained in a 2 x 2 block of boxes of ©;.

Example 2. Consider the thickened strip in Fig. 1.2 (the left one), the only corner that
is not special in this thickened strip is the box (2, 3).

Now we are ready to present the outside thickened strip decomposition.

Definition 1.5 (outside thickened strip decomposition). Suppose that ©1,0,, ..., 0, are
thickened strips in the skew diagram of A/ and every thickened strip has a starting box
on the left or bottom perimeter of the diagram and an ending box on the right or top
perimeter of the diagram. Then we say the totally ordered set ® = (01,0,,...,0,) is
an outside thickened strip decomposition of the skew diagram of A/p if the union of the
thickened strips ©; of ® is the skew diagram of A/, and for all i, 7, one of the following
statements is true:

(1) two thickened strips ©; and ©; are disjoint, that is, ©; and ©; have no boxes in
common;

(2) one thickened strips ©, is on the right side or the bottom side of the other thickened
strip ©; and they have some special corners in common, where each common special
corner (s,t) is a lower corner of ©; and an upper corner of ©,.

Every special corner of a thickened strip in @ is called a special corner of & and every
common special corner of any two distinct thickened strips of ® is called a common special
corner of P.
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Remark 1.4. If ©; has only one box (s,t) and box (s,t) is also a special corner of ©;.
Then the outside thickened strip decomposition ® is essentially the same as the one without
©,;. So we exclude this scenario.

Example 3. Fig. 1.8 (middle, right) shows an outside thickened strip decomposition ® =
(01,09,03) of the skew diagram of (6,6,6,4)/(3,1) where the bozes (4,1) and (3,3) are
the common special corners of ©y and ©3. The box (2,5) is the only common special corner
of ©1 and ©y. In Fig. 1.3 every common special corner of ® is marked by a black square,
while other boxes are marked by black dots.
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FIGURE 1.3. An outside thickened strip decomposition (01, ©, O3) (middle,
right) of the skew diagram (6,6,6,4)/(3,1) (left).

We observe that, unlike the strips in any outside decomposition, the thickened strips in
any outside thickened strip decomposition ® are not necessarily nested; see Definition 1.7.
However, the nested property of thickened strips in an outside thickened strip decomposition
is of central importance in the proof of Theorem 2. In view of this, we need to introduce
the enriched diagrams and the directions of all boxes in the skew shape A/u to describe
the nested property of thickened strips.

Definition 1.6 (enriched diagram). Suppose that ® = (01,0,,...,0,) is an outside
thickened strip decomposition of the skew shape A/u, for every i such that 1 <i < g, and
for box (s,t) that is the starting box or the ending box of ©;, we shall add new boxes to
O, according to the following rules:

(1) if box (s,t) is a lower corner of ©; and an upper corner of some other thickened
strip in @, we add boxes (s,t — 1), (s — 1,%), (s — 1,¢ — 1) that are not contained in
(2) if box (s,t) is an upper corner of ©; and a lower corner of some other thickened
strip in ®, we add boxes (s,t+ 1), (s+ 1,%),(s+ 1,¢+ 1) that are not contained in
@i to ®i7
where all the coordinates of new boxes are relative to the coordinates of the boxes in the
skew diagram of A/u. We denote by D(0;) the diagram after adding the new boxes to ©;
and we call D(0;) an enriched thickened strip. If neither the starting box nor the ending
box of ©; satisfies 1 or 2, then D(0;) = ©,. An enriched diagram D(®) is the union of all
enriched thickened strips D(0;) for every ©; of ®.

Example 4. In Fig. 1.3 the box (4,1) contained in O3 and O4 is the only box that satisfies
conditions (1) and (2) of Definition 1.6. So we add the boxes (4,0),(3,0) to ©3 and add
the bozes (5,1),(5,2) to ©y; see Fig. 1.4 where all newly added boxes are colored grey.
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FIGURE 1.4. The enriched diagram D(®) (left) and the enriched thickened
strips (middle, right) where ® = (04, ©4, ©3) is given in Fig. 1.3.

The enriched diagram D(®) may not be a skew diagram; see Fig. 1.4. With the help of
enriched diagram D(®), one can define the directions of all boxes other than the special
corners of ® in the skew diagram of A\/u. For every box (s,t) of the skew diagram of \/p,
if box (s,t) is not a special corner of ®, then box (s,t) is contained in only one thickened
strip ©; of ®. We may define the direction of box (s,t) in the enriched diagram D(®)
according to the following rules:

(1) if both boxes (s, + 1) and (s — 1,¢) are contained in the enriched thickened strip
D(0;) of D(®), then we say the box (s,t) goes right and up;

(2) if not both boxes (s — 1,t) and (s,¢+ 1) are contained in D(0;), then we say that
the box (s,t) goes right or goes up if (s,t+ 1) or (s — 1,¢) is contained in D(©;);

(3) if neither box (s,t+ 1) nor box (s —1,¢) is contained in D(0;), then box (s,t) must
be the ending box of ©;, thus it must be on the top or right perimeter of the skew
diagram of A/, and we say that box (s,t) goes up if it is on the top perimeter of
A/p and that box (s,t) goes right if it is on the right perimeter but not on the top
perimeter of the skew diagram of \/pu.

Definition 1.7 (outside nested decomposition). An outside thickened strip decomposition
® is an outside nested decomposition if & = (01,0,,...,0,) is nested, that is, for all c,
one of the following statements is true:

(1) all boxes of content ¢ all go right or all go up;
(2) all boxes of content ¢ or all boxes of content (¢ + 1) are all special corners of ®.

Remark 1.5. It should be noted that all boxes of content (c + 1) are special corners of
® if and only if all boxes of content ¢ all go right and up. Definition 1.7 is analogous to
the nested property of the strips in any outside decomposition where all boxes on the same
diagonal of the skew shape A/ all go right or all go up; see [3, 8].

Example 5. The outside thickened strip decomposition in Fig. 1.3 is an outside nested
decomposition because all boxes on the diagonal of content —3,0,3 are all special corners,
all boxes on the diagonal of content 1,4,5 all go up, all boxes on the diagonal of content
—2 all go right, and all boxes on the diagonal of content —1,2 go right and up.

Hamel and Goulden [8] defined a non-commutative operation # for every two strips of an
outside decomposition ¢ = (0, 6s, .. .,0,) of the skew shape A\/u, also when the skew shape
A/ is edgewise disconnected. Subsequently, Chen, Yan and Yang [3] came up with the
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notion of cutting strips so as to derive a transformation theorem for Hamel and Goulden’s
determinantal formula, in which one of the key ingredients is a bijection between the outside
decompositions of a given skew diagram and the cutting strips.

Based on these previous work, we will extend the non-commutative operation # to every

two thickened strips of an outside nested decomposition ® = (01, 0,,...,0,) of the skew
shape A\/p. In order to provide a simple definition of ©,#0,, we need to introduce the
thickened cutting strips, which are called ‘cutting strips’ for any outside decomposition in
3].
Definition 1.8 (thickened cutting strips). The thickened cutting strip H(®) with respect
to an outside nested decomposition ® = (01,0,,...,0,) is a thickened strip obtained
by successively superimposing the enriched thickened strips D(©;), D(0s), ..., D(0,) of
D(®) along the diagonals.

We say that a box « of the thickened cutting strip H(®) has content ¢ if box « is on
the diagonal of content ¢ in the skew diagram of \/u and we represent each box of the
thickened cutting strip H(®) as follows:

(1) box [c] denotes the unique box of H(®) with content ¢;
(2) box [¢, +] and box [¢, —| denote the upper and the lower corner of H(®) with content
c if they are contained in a 2 x 2 block of boxes in H(®P).
Because of the nested property in Definition 1.7, the thickened cutting strip H(®) with
respect to any outside nested decomposition ® is a thickened strip.

Example 6. Consider the outside nested decomposition ® = (01,04, 03) in Fig. 1.3, the
thickened cutting strip with respect to ® is constructed in Fig. 1.5, where the dashed lines
represent the diagonals of content —3,0, 3 respectively.

[
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FIGURE 1.5. The thickened cutting strip H(®) (right) with respect to the
outside nested decomposition (01, 05, O3) in Fig. 1.3 and the enriched thick-
ened strips D(01), D(0,), D(0O3) are given in Fig. 1.4.

Definition 1.9 (0, # ©;). If the skew diagram of \/u is edgewise connected, let ¢ =
(01,0,...,0,) be an outside nested decomposition of skew shape A/u, and let H(®) be
the thickened cutting strip with respect to ®. For each thickened strip ©; in ®, if ¢; is the
content of the starting box of ©;, the starting box P(6;) of ©; is given as below:
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1) p(©;) = [¢] if the starting box is not a special corner of ®;
(2) p(©;) = [¢;, +] if the starting box is a special corner of ® and an upper corner of
O;

(3) p(©;) = [c;, —] if the starting box is a special corner of ® and a lower corner of ©;,
where a special corner of ® is defined at the end of Definition 1.5. Likewise, we denote the
ending box of ©; by ¢(0;) if we replace p(©;) by ¢(0;) and replace the starting box by the
ending box from the above notations. Then ©; forms a segment of the thickened cutting
strip H(®) starting with the box p(0;) and ending with the box ¢(©;), which is denote by
p(©:),q(0;)]. We may extend the notion to [p(©;), ¢(0;)] in the following way:

(1) if ¢; < ¢; or p(©;) = q(©;), then [p(©,), ¢(O;)] is a segment of H(P) starting with

the box p(©;) and ending with the box ¢(0;):

(2) if p(©,) and ¢(O;) are in the same diagonal of H(®) and p(©;) # ¢(6;), or ¢; =

¢; + 1, then [p(8;), ¢(0;)] = &;

(3) if ¢; > ¢; + 1, then [p(0;), ¢(O;)] is undefined.

For any two thickened strips ©; and ©; of ®, the thickened strip ©,#0; is defined as
[p(9;), a(©:)].

Remark 1.6. We only need to deal with the outside nested thickened strip decomposi-
tions of an edgewise connected skew diagram because the Schur function of any edgewise
disconnected diagram is a product of Schur functions of edgewise connected components.

Remark 1.7. Since ® is an outside nested decomposition, we can identify every thickened
strip ©; as a segment of H(®) starting with the box p(©;) and ending with the box q(©;).

Example 7. Consider the outside nested decomposition ® = (01,04, 03) in Fig. 1.3, one
has ©1#05 = [p(©3),q(©1)] = [[-3,+],[5]] = (5,5,5,4,4)/(4,3,3,2), that is, a segment
of the thickened cutting strip H(®) in Fig. 1.5 starting with box [—3,+] and ending with
box with content [5]. Similarly, the thickened strips obtained by the operation # are given
below:

O1#03 = (4,4,4,3,3,1)/(3,2,2,1), O#60; = (2,2),

@2#@3 - (4? 47 3a 37 1)/(2? 27 1)a @3#@1 = J, @3#@2 = (4? 4)/(2)

2. PROOF OF THEOREM 2 AND COROLLARY 3

Since it is convenient to construct an involution in the context of lattice paths, we
choose to represent semistandard Young tableaux of thickened strip shape in the language
of lattice paths. Our proof of Theorem 2 consists of three main steps, which are respec-
tively presented in subsections 2.1-2.3. We will prove Corollary 3 by using the exponential
specializations of the Schur functions and power sum symmetric functions.

2.1. From Semistandard Young tableaux to double lattice paths. First we recall
that H(®) is the thickened cutting strip which corresponds to ® (see Definition 1.8) and
©,;#0; is given in Definition 1.9. For any 4, j, for any given semistandard Young tableau
To, 40, of shape ©,#0;, we introduce the corresponding double lattice path P(u;,v;) and
such construction Te,4e, — P(u;,v;) is invertible.
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Definition 2.1 (double lattice paths). Under the assumption of Theorem 2, for a given
semistandard Young tableau Te,4e, of shape ©;#0);, the starting point u; and the ending
point v; of the double lattice path P(u;,v;) are given as below:

(1) if the starting box (s,t) of ©; is a common special corner of ®, and
if box (s, 1) is a lower corner of ©;, then u; = (t — s,1);
otherwise if box (s,) is an upper corner of ©;, then u; = (t — s, 00);
if the starting box (s,t) of ©; is not a common special corner of ®, and
if box (s,t) is on the left perimeter of the skew shape A/p, then u; = (t —s,1);
otherwise if box (s,t) is only on the bottom perimeter of the skew shape \/p,
then u; = (t — s, 00);
(2) if the ending box (i, v) of ©; is a common special corner of ®, and
if box (i, v) is a lower corner of ©;, then v; = (v — p + 1, 1);
otherwise if box (u, V) is an upper corner of 6;, then v; = (v — p + 1, 00);
if the ending box (u,v) of ©; is not a common special corner of ®, and
if box (u,v) is on the right perimeter of the skew shape A/u, then v; = (v —
p+1,00);
otherwise if box (u,r) is only on the top perimeter of the skew shape \/p,
then v; = (v — pu+1,1).

The double lattice path P(u;, v;) consists of four types of steps: an up-vertical step 1 (0, 1),
a down-vertical step | (0,—1), a horizontal step — (1,0) and a diagonal step \, (1, —1),
which satisfy the conditions

(3) a down-vertical step (0,—1) must not precede an up-vertical step (0, 1) and must
not precede a horizontal step (1,0);

(4) an up-vertical step (0,1) must not precede a down-vertical step (0, —1) and must
not precede a diagonal step (1, —1).

If box « of content ¢ has entry ¢ in Te,46,, then we put a horizontal step from (c,q) to
(c+1,q) if one of the following are true:

(5) a box of content ¢ — 1 is to the left of box o in ©,#06;
(6) box « is the starting box of ©; and u; = (¢, 1).

If box « of content ¢ has entry ¢ in Te,4e,, then we put a diagonal step from (c,q +1) to
(c+1,q) if one of the following are true:

(7) a box of content ¢ — 1 is right below box a in ©,#6;
(8) box « is the starting box of ©; and u; = (¢, 00).

Finally after we connect all non-vertical steps by up-vertical and down-vertical steps, we
get the double lattice path P(u;,v;).

Remark 2.1. If ©,#0; = @, then according to 5-8 of Definition 2.1, P(u;,v;) has no
non-vertical steps. If ©;#0; is undefined, then the starting point u; is on the right hand
side of the ending point v;, so by Definition 2.1 there exist no double lattice paths from u,
to vy, that is, P(uj,v;) is also undefined.
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By construction all starting points and ending points are all distinct. Once the starting
point u; and the ending point v; are chosen, the shape of any double lattice path P(u;,v;)
is fixed, that is, whether any non-vertical step of P(u;,v;) is horizontal or diagonal, is
determined by ©;#0;.

Furthermore, we note that the double lattice path P(u;,v;) records the entries of Te, 4o,
via the y-th coordinates of all ending points in non-vertical steps, namely, the point (¢+1, q)
is the ending point of some non-vertical step of P(u;, v;) if and only if a box of content ¢ has
entry ¢ in Te,4e,. So the construction Te,4e, + P(u;,v;) is a bijection, which allows us
to identify the Schur function se,4e,(X) as the generating function of all weighted double
lattice paths from u; to v; in subsection 2.3.

Example 8. For i = 1,2,3, consider the thickened strips in Fig. 1.3, the double lattice
path P(us,v3) of the thickened strip tableau To,zo, is given in Fig. 2.1 where all integers
represent the y-th coordinates of all ending points from the non-vertical steps in P(us,v3).
We have discussed the shape of O3#0Os in Example 7. Since the starting box p(©s) =
[—3,4] of O3#04 is an upper corner of Oy, according to condition (1) in Definition 2.1,
the starting point uy is (—3,00) and we put a diagonal step from (—3,3) to (—2,2) in
Fig. 2.2 because of condition (8) in Definition 2.1. Similarly, since the ending box of
O3#0, is q(O3) = [1], the ending point vs is (2,1).

In addition, the corresponding double lattice path P(uy,vs3) of the empty thickened strip
tableau To,po, = Ty consists of only vertical steps from uy = (2,00) to vy = (2,1).

U2

Yy P(UQ,’Us)
To,#0, 6 6 ?
40 1 05 2 A
4

214156 J

2] ! p(©2) [ 112 ]a®s)
3 2 T iy
2 1 !
1 U3
0 X

-3 -2-10 1 2

FIGURE 2.1. A thickened strip tableau To, 40, (left), the corresponding dou-
ble lattice path P(ug,v3) (middle) and the thickened cutting strip H(P)
where the starting box p(©3) = [—3,+] and the ending box ¢(03) = [1] of
O3#0, are marked with empty squares (right).

With the bijection Te,4e, = P(uj;,v;) we can establish the bijection between semistan-
dard Young tableaux of skew shape \/p and non-crossing g-tuples of double lattice paths
in Proposition 7.

Definition 2.2 (non-crossing). For any © = mymy -+ -7, € Sy, let
(2.1) (P(tr;,v1), Ptny, 02), ..., P(Ur,, vg))
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be a g-tuple of double lattice paths. Then (2.1) is non-crossing if for any i and j, P(uy,, v;)
and P(ur,,v;) are non-crossing. This holds if one of 1,2 is true.
(1) P(ur,;,v;) and P(uy,;,v;) are non-intersecting, that is, have no points in common;
(2) P(ugr,;,v;) is on the top side of P(u,,,v;) and they have some points in common,
where each common point (c+1, ¢) occurs only when one diagonal step of P(uy,,v;)
and one horizontal step of P(u,,,v;) end at the same point (¢ + 1, ¢q).
Otherwise P(ur,,v;) and P(ur,,v;) are crossing and (2.1) is crossing. If (2.1) is non-
crossing, we call every common point of any two double lattice paths in (2.1) a touchpoint
of (2.1).

Example 9. The triple (P(uy,v1), P(ug,ve), P(us,vs)) of double lattice paths given in
Fig. 2.2 where the y-coordinates of uy,v1,uy are all infinity, is non-crossing and all touch-
points have coordinates (—2,3),(1,4), (4,3).

P(u1,v1)

-3 -2 -1 0 1 2 3 4 5 6 -3 -2 -1 0 1 2 3 4 5 -3 -2 -1 0 1 2 3 4 5

FIGURE 2.2. Three double lattice paths where each P(u;,v;) uniquely cor-
responds to the semistandard Young tableau Tp, in Fig. 2.3.

The lemma below actually verifies the condition of Stembridge’s theorem on the non-
intersecting lattice paths [15], which developed Lindstrom-Gessel-Viennot lattice paths
approach [6]. Though Stembridge considered only the non-intersecting lattice paths, his
theorem is still applicable to the non-crossing double lattice paths.

Lemma 6. If a g-tuple (2.1) of double lattice path is non-crossing, then m must be the
identity permutation, that is, T = id = (1)(2)---(g).

The proof is the same as the one for the non-intersecting lattice paths in [8]. To make
the paper self-contained, we put the proof of Lemma 6 in the Appendix.

Proposition 7. Under the assumption of Theorem 2, there is a bijection between semis-
tandard Young tableaux of skew shape \/p and non-crossing g-tuples of double lattice paths
with r touchpoints.

Proof. For a semistandard Young tableau T of the skew shape \/u, we can express T' as a
g-tuple (Te,, To,, . .., Te,) of thickened strip tableaux where Tp, is 1" that is restricted to
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the thickened strip shape ©;. By the bijection T, — P(u;, v;) in Definition 2.1, one gets
a g-tuple

(2.2) (P(u1,v1), P(ua,v2), ..., P(ug,vy))

of double lattice paths. The fact that (2.2) is non-crossing follows from the fact that all
entries of boxes on the same diagonal of T" are strictly increasing from the top-left side to
the bottom-right side. The map (Te,,Te,, ..., To,) — (2.2) is a bijection because, for any
i and j, two double lattice paths P(u;,v;) and P(u;,v;) are non-intersecting if and only if
two thickened strip tableaux Te, and Tp, are disjoint. Furthermore, P(u;, v;) is on the top
side of P(u;,v;) such that the diagonal step of P(u;,v;) and the horizontal step of P(u;,v;)
end at the same point (¢+ 1, ¢) if and only if the box of content ¢ and with entry ¢ in T, is
an upper corner of ©; and a lower corner of ©;. Since there are » common special corners
of @, there are r touchpoints of (2.2). O

Example 10. Consider the semistandard Young tableau T' = (To,, Te,, To,) of skew shape
(6,6,6,4)/(3,1) in Fig. 2.3, the corresponding triple of double lattice paths P(u;,v;) under
the bijection To, — P(u;,v;) is displayed in Fig. 2.2 where the y-coordinates of uy, vy, uz
are all infinity.

T To, Te, To,
112 1
9 3
313 313 314
1(3 |4
3
3 6 2] 13 ]4 6

FIGURE 2.3. A semistandard Young tableau 7" which is equivalent to a triple
(To,, To,, To,) of thickened strip tableaux and ® = (01, ©,, O3) is given in
Fig. 1.3.

2.2. Count the separable sequences of double lattice paths. We first introduce
separable g-tuples P of double lattice paths in Definition 2.3 and then prove such g-tuples
P of double lattice paths are in bijection with all pairs (P, {a;}/_;) where P is a non-
crossing g-tuple of double lattice paths and {a;}_; is a sequence of r positive integers in
Proposition 8.

Definition 2.3 (separable double lattice paths). For any = € S, let
(2.3) P = (P(tr,v1), P(tny,v2), ..., P(tin,, vy))

be a g-tuple of double lattice paths. Forall 1 <1i < g, if P(u,,, v;) has a point on line x = ¢,
we define the unique c-point of P(u,,, v;), which is the ending point of the non-vertical step
of P(ug,,v;) between lines = ¢ — 1 and x = ¢, or the starting point of P(u,,, v;) on line
x = c. Then P is separable if the following are true:
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(1) for all ¢ such that neither ¢ nor ¢ — 1 is the content of some special corner of ®, any
two double lattice paths in P are not intersecting on line x = c;

(2) for all ¢ such that ¢ is the content of some special corner of @, for all pairs (c, [i, 7])
such that the c-point of P(uy,,v;) is below the one from P(ur,,v;) and there is no
other c-points in between,

e cither P(u,;,v;) after step (b) or P(ur,,v;) after step (d) is a double lattice
path, where steps (b), (d) are given by

(b) shift the diagonal step between lines z = ¢,z =c+1to (¢,q+ 1) \( (c+ 1,q)
if (¢4 1, q) is the ending point of a horizontal step from P(u,,,v;); change the
vertical steps of P(ur;,v;) on lines = ¢ and x = ¢ + 1 so that they connect
to the new diagonal step;

(d) shift the horizontal step between lines z = ¢,z = ¢+ 1 to (¢,p) = (¢ + 1,p)
if (¢ + 1,p) is the ending point of a diagonal step from P(u,,,v;); change the
vertical steps of P(u,,,v;) on lines © = ¢ and = = ¢ + 1 so that they connect
to the new horizontal step.

Example 11. For the outside nested decomposition ® = (01, Oq, O3) in Fig. 1.3, the triple
P of double lattice paths in Fig. 2.5 is separable. There are three pairs (—3,[3,2]), (0,[3,2]),
(3,[2,1]) satisfying condition (2) of Definition 2.3.

For instance, the pair (=3, [3,2]) satisfies condition (2) of Definition 2.3, because for ¢ =
—3, the c-points of P(us,vs) and P(ug,ve) are respectively ug = (—3,1) and us = (—3,00).
There is no other c-points in between. The double lattice path P(us,vs), after shifting the
diagonal step (—3,4) \y (—2,3) to (—3,6) \y (—2,5) and adjusting the vertical steps on
lines x = —3,—2, is not a double lattice path; see the right one of Fig. 2.4, while P(us, v3)
after step (d) is a double lattice path, namely, shift the horizontal step (—3,5) — (—2,5)
to (—3,3) — (—2,3) and adjust the vertical steps on lines v = —3,—2. See the left one of
Fig. 2.4.

Y Yy u2
6
6 6 +\\
5
5 5 5 ’ 5
4 4
4 4 4
3 3

3 2 3
2 1 2 2
1 1

us3 V3
0 z 0 T

-3 -2 -1 0 1 2 -3 -2 -1 0 1 2 3 4 5

FIGURE 2.4. A double lattice path (left) and a non-double lattice path
(right). The right one is not a double lattice path because a down-vertical
step (—2,5) | (—2,4) precedes a horizontal step (—2,4) — (—1,4), which
fails to satisfy condition (3) of Definition 2.1.
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Proposition 8. Under the assumption of Theorem 2, for any fixed total order of all points
in the 2-dimensional N x N grid, there is a bijection between all separable g-tuples P of
double lattice paths with precisely r pairs (c, [i, 7]) in condition (2) of Definition 2.3, and all
pairs (P, {a;};_,) where {a;};_, is a sequence of r positive integers and P is a non-crossing
g-tuple of double lattice paths with r distinct touchpoints.

Furthermore, if P given in (2.3) is separable, then m must be the identity permutation,
that is, m = (1)(2) - - - (g).

Proof. The map P +— (P, {a;}}_,) is given as follows. For a given separable g-tuple (2.3)
of double lattice paths with exactly r pairs (¢, [i,j]) in condition (2) of Definition 2.3, we
choose any total order of such pairs and perform the following procedure one by one: for
1 < s < r, suppose that (c,[i,j]) is the s-th pair. Then,

(1) if P(ugr;,v;) after step (b) is a double lattice path, assume that the diagonal step of
P(ux;,v;) between lines = ¢,z = ¢+ 1 ends at (c+1,p). Then we set a, := p and
replace P(ur;,v;) by the new double lattice path after step (b);

(2) otherwise, assume that the horizontal step of P(u,,, v;) between lines x = ¢, x = c+1
ends at (¢ + 1,¢). Then we replace P(uy,,v;) by the new double lattice path after
step (d) and set a5 := q.

Note that after each replacement, we get a new g-tuple of double lattice paths, then we
repeat procedure (1),(2) on the next pair and so on. In each replacement, two double
lattice paths become non-crossing between lines x = ¢ and x = ¢ + 2 where a touchpoint
is located on line x = ¢+ 1, and this touchpoint is the s-th touchpoint in the total order,
if and only if it is produced by the s-th pair (¢, [i, j]) from the above procedure.

We denote by P(ur,,v;) the double lattice path after we finish the above procedure
on P(ug,,v;) for all i. Together with condition (1) of Definition 2.3, we find that the
g-tuple of double lattice paths P(u,,,v;) must be non-crossing. In view of Lemma 6,
7=1id = (1)(2)---(g). So P = (P(uy, v1),P(ug,va), ..., Plug,v,)).

The reverse map (P, {a;}{_,) — P is given as follows. For a non-crossing g-tuple

P = (P(ul,vl),P(uz,w), s '>P(ug7vg))

of double lattice paths with r touch points {(p;, ¢;) }i_;, let {a;}7_, be a sequence of positive
integers. Then we perform the following procedure one by one: suppose that the diagonal
step of P(us,,vs,) and the horizontal step of P(uy,,v;,) intersect at the point (p;, ¢;). Then

(3) if P(us,,vs,), after step (e), is still a double lattice path, then we replace P(us,,vs,)
by this new double lattice path.

(e) Shift the diagonal step (p; — 1,¢; + 1) \¢ (pi, @) to (p; — 1,a; + 1) N\ (ps, ;)
in P(us,,vs,); change the vertical steps on lines = p; — 1 and = = p; so that
they connect to the new diagonal step;

(4) otherwise a; > ¢; and we replace P(uy,,v;,) by the new double lattice path after
step (h).

(h) Shift the horizontal step (pi — 1,¢:) — (pi, @) to (pi — 1,a;) — (ps, ;) in
P(uy,, vy, ); change the vertical steps on lines x = p; — 1 and = = p; so that they
connect to the new horizontal step.
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Note that after each replacement, we get a new g-tuple of double lattice paths, then we
repeat procedure (3), (4) on the next touchpoint and so on. Finally we retrieve the g-tuple
P of double lattice paths after we finish the above procedure for all touchpoints {(p;, ¢;) }i_; .
It is easy to verify that P is separable by Definition 2.3. Consequently, P — (P, {a;}}_;) is
a bijection. O

Example 12. Consider the pair (P,{a;};_,) where P is a non-crossing triple of double
lattice paths in Fig. 2.2 and {a;}3_, = (5,3,5), we arrange the touchpoints in the sequence
{(piyq) 12, = ((—2,3),(1,4),(4,3)), the corresponding separable triple P of double lattice
paths, under the inverse map (P, {al}zzl) — P in Proposition 8, is shown in Fig. 2.5.

P(u1,v1)

-3 -2 -1 0 1 2 3 4 5 -3 -2 -1 0 1 2 3 4 5

FIGURE 2.5. A separable triple of double lattice paths.

Example 13. The triple of double lattice paths in Fig. 2.6 is not separable. For ¢ = 2,
P(uy,v3) intersects P(us,ve) and P(ug,vi) on line v = 2. For ¢ = 3, we consider the
pair (3, (2, 1]) where neither P(uq, v1) after step (b) nor P(us,vs) after step (d) is a double
lattice path. This is also true for the pair (0, [1,2]) when ¢ = 0.

6 -3 -2 -10 1 2 3 4 5 6° -3 -2 -10 1 2 3 4 5

FIGURE 2.6. A non-separable triple of double lattice paths.
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2.3. Construct the involution. For any permutation 7 = mmy - - - w4 € S, the inversion

of mis inv(m) = [{(4,7) : m > m;,i < j}| and we may interpret the determinant in
Theorem 2 as
g
(24) det[se,z0,(X)y = > (—1)™ ] se,xe., (X)
TESy i=1

In view of the bijective construction Te,4e,, = P(ur,,v;) in Definition 2.1, the generating
function se,4e, (X) is

sep0,, (X) = Z w(P(tr,,v;)) := Z Hvs

P(un;,v;) P(ur;,v;) S

where the sum ranges from all double lattice paths P(u,,, v;) from wu,, to v; and the weight
w(P(ur,,v;)) on the double lattice path P(u,,,v;) is the product of vs, which ranges from
all ending points s of non-vertical steps in P(u,,,v;) and vs represents the weight on such
point s. The weight v, is defined as follows:

For each ending point s = (a,b) of some non-vertical step, we assign it with weight
vs = xp. For any other point, we assign it with weight 1.

Consequently (2.4) becomes

det[se,po0,(X), = > (-1)™™ H > w(P(ug, )

TESy =1 P(u,r 7Uz)
(2.5) = Z Z(— yinvim) Hw (Un,, 7))
€Sy P
where the last sum runs over all g-tuples P = (P(uz,,v1), P(Uny,2), ..., P(tz,,vy)) of

double lattice paths. We view (2.5) as a generating function for all pairs (7, P) where
m € S, and P is any g-tuple of double lattice paths.

From Proposition 7 and Proposition 8, it follows that the generating function for all
pairs (id,P) when P is separable, equals the generating function for all pairs (P, {a;}I_;)
where P is a non-crossing g-tuple of double lattice paths, that is,

(2.6) (Z 20) $a/u(X) = prr(X)s0/0(X).

So in order to prove Theorem 2, it remains to find an involution on all pairs (7, P) when
P is not separable. By Definition 2.3, a g-tuple P of double lattice paths is not separable
if one of conditions (1), (2) in Definition 2.3 is not true.

It should be mentioned that conditions (1) and (2) are disjoint, that is, there is no
common c such that neither (1) nor (2) is true. So we first consider the minimal integer
Cmin dissatisfying one of conditions (1), (2) in Definition 2.3. Second we choose a minimum
of any non-separable g-tuple

(27) P = (P(Umgvl)ap(umavl>7‘“77)(“#971]9))



OUTSIDE NESTED DECOMPOSITIONS AND SCHUR FUNCTIONS 19

of double lattice paths to be

e a point (¢yin, y) if it is the first point on line x = ¢y, from top to bottom such that
two double lattice paths in P are intersecting at point (Cmin, ¥)-

e a pair (¢uin, (y1,¥2)) where y1 < yo if (Cimin, ¥2), (Cmin, Y1) are the first two points on
line & = ¢, from top to bottom such that there is a pair (¢, |2, 7]) dissatisfying
condition (2) of Definition 2.3, and (Cmin, ¥2), (Cmin, ¥1) are respectively the cpin-
points of P(ux;,v;), P(tr,, v;).

Example 14. In FExample 13 we have discussed the non-separable triple of double lattice
paths in Fig. 2.6. In this case, cmin = 0 and the minimum is (Cmin, (Y1, 42)) = (0, (3,5)).

We are now ready to construct the involution f on all non-separable g-tuples P of double
lattice paths by distinguishing the cases when the minimum of P is a point (cupi,,y) or a
pair (¢min, (Y1,92)). For each case, we will express the involution f as

(m,P) = (0,Q) = f((m, P))

where m,0 € S, and P, Q are two non-separable g-tuples of double lattice paths with P
given in (2.7) and with

(2.8) Q = (Qtg,, 1), QUgy, v2), - - ., Qte,, Vy)).-

For each case below, the involution f has the following properties:

(1) f is weight-preserving, that is, [[]_; w(Q(ts,, vg)) = [T]_; w(P(tr,, vg));

(2) [ is sign-reversing, that is, inv(7) = inv(o) £ 1;

(3) f is closed, that is, P and Q belong to the same case (or subcase).
Case 1: if the minimum of P is the point v := (¢pin,y), assume that P(u.,,v;) and
P(ur,;,v;) are two double lattice paths whose cpis-points are the topmost and the second
topmost among all double lattice paths in P that are passing point v.

Since neither ¢y, nor ¢y, — 1 is the content of some common special corner of @, all
steps of P between lines x = ¢, and o = ¢,in + 1 are all horizontal steps or all diagonal
steps. Using the notations P(u,,,v) and P(v,v;) to denote the segments of the double
lattice path P(ur,,v;) from ur, to v and from v to v; (similarly for P(ur;,v;)), we may
define the pair (0, Q) = f((m,P)) where 0 = wo (ij) as follows. For q # i, ¢ # j, we set
Q(uaq> Uq) = P(uﬂq> Uq) and

Q(Ug,, Vi) = P(tig;, v)P(v,v:), QUs,,vj) = P(Un;, v)P(v,v)).

We will show that Q(ue,,v;) is a double lattice path from uy, = ur, to v; and Q(u,,,v;) is a
double lattice path from u,, = u,, to v; by discussing the ending points of the non-vertical
steps between lines © = ¢, — 1 and x = ¢ + 1.

Here, without loss of generality, we assume that the steps between lines x = ¢y — 1
and x = cpin are horizontal, while the steps between lines * = ¢y, and © = ¢y + 1
are diagonal. Suppose that the ending points of non-vertical steps from P(u,,,v;) are
points (Cmin, @1) and (cmin + 1, az) where a; > ay, and the ones from P(u,,,v;) are points
U = (Cmin, ¥) and (Cumin + 1, b2) where y > by; see Fig. 2.7. Since P(ur,,v;) and P(ux;,v;)
are intersecting at point v = (¢pin,y), one has ay < y < ap, which implies by < y < ay.
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So there is no single up-vertical step on line z = c¢,;, that is preceding the diagonal step
in Q(uy,,v;) or Quy,,v;). This indicates that Q(ue,,v;) and Q(u,,,v;) are double lattice
paths according to Definition 2.1.

Furthermore, f is closed within all non-separable g-tuples of double lattice paths that
belong to case 1, because by construction the minimum of Q is also v = (Cpin,y). See
Fig. 2.7.

F1GURE 2.7. The involution f for case 1 when the minimum of P is a point
v = (Cmin, y) (marked by a black square) and ay, as,y, by represent the y-th
coordinates of all ending points from non-vertical steps.

Case 2: if the minimum of P is a pair (Cmin, (Y1, y2)) where y; < y2, by assumption the
triple (cmin, [¢, j]) fails to satisfy condition (2) of Definition 2.3, that is, for ¢ = ¢y, neither
P(ur,;,v;) after step (b), nor P(ur,,v;) after step (d), is a double lattice path.

Suppose that between lines © = ¢, — 1 and © = ¢y, + 2, the diagonal steps and the
horizontal steps of P(uy,,v;) and P(ur,,v;) are given in Fig. 2.8, where all labels represent
the y-th coordinates of all ending points from non-vertical steps. Note that vy, y3 have no
value relation, that is y; < y3 or y; > y3. So are y, and y,. It should be mentioned that the

’P(uwl v;) P(uwj,'uj)

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
[ I a | [ [ I a | [ [ [ [ [ [ [ [ [
I [ [ [ [ I da | [ [ I da | [
! \ \ ! ! o ! o !
I Vs or I I I I I or —~ v I
I I I I I Y2 V1 I Y2 4
I Y1 I q I e I I I I
Lo | [ Y \ ::\ [ b [ [ b
\ d; \ \ 14 Lo \ Lo \
| \\ | | \\ vs Lo | P |
| | I | | Ly | | | Ly | | | ey

Cmin Cmin c Crin

y1 < ys Y1 > Y3 y2 < ya Y2 > Y4

FIGURE 2.8. The steps of P(ur,, v;) and P(uy;, v;) between lines 7 = cpin—1
and = = ¢y, + 2 if the minimum of P is a pair (¢, (Y1, 2))-

horizontal step ending at (¢ + 1, d2) and the diagonal step ending at (¢pin + 2, y4) are not
contained in P(uy;,v;) if the starting box or the ending box of ©; is the common special
corner of ©; and ©,. But for this situation the discussion on the involution f follows
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analogously, so we focus on the case when these two steps are contained in P(u,,,v;).
Likewise, we focus on the case when the diagonal step ending at (¢pnin + 1,d;) and the
horizontal step ending at (cmin + 2, y3) are contained in P(u.,, v;).

Note that we can identify any double lattice path P(u,,, ,v,) as a pair

P(“Fm? Um) = (P-l— (umm Um)v P- (umm Um))

of lattice paths where all steps in P, (u,, ,v,) are above or the same as the ones in
P_(tr,,, Uy). For example, in Fig. 2.8, the horizontal step ending at (¢yin, y1), the horizon-
tal step ending at (¢, + 1, a), the diagonal step ending at (¢ + 2,y3), and all vertical
steps in between belong to P (ur,,v;). The horizontal step ending at (c¢min, ¥1), the diago-
nal step ending at (¢ + 1, dq), the horizontal step ending at (¢ + 2, y3), and all vertical
steps in between belong to P_(u,, v;).

Since neither P(u,,,v;) after step (b) nor P(un,,v;) after step (d) is a double lattice
path, the integer a must satisfy a > y5 or a > y, and the integer b must satisfy b < y; or
b < ys. In other words, Py (tr,, vi), Py (tr,, v;) are intersecting and P_(ur,, v;), P—(tr,, v;)
are intersecting on lines x = ¢y, Or = Cpin + 1.

Let wy,wy be the intersecting points, respectively, of Py (ur,,v;), Py (tr,,v;) and of
P_(tn,,vi), P_(tr,,v;). Then, as in case 1, we will switch the segments after points
wy, wy between P(uy,,v;) and P(uy,,v;).

Using Py (uy,,, w;) and P, (wy,v,,) to denote the segments of P (uy,, , vy) from u,,, to
wy, and from w; to vy, respectively. Similarly for P_(u,,,, ws) and P_(ws, v,,). We may
define the pair (0, Q) = f((m,P)) where 0 = wo (i j) as follows. For q # i,q # j, we set
Q(Ug,,Vq) = P(tn,, vq). For ¢ =1 or ¢ =j, Qus,,vq) = (Qy(Us,,Vq), Q—(to,,vq)) Where

Q+ (uaw Ui) - P—I— (uﬂ'ja wl)P-l— (w17 Ui)? Q— (u0i7 Ui) - P— (uﬂja H)Q)P_ (w27 Ui)'
Q+ (uUj’ Uj) = PJr (uﬂ'i’ wl)PJr (wl’ Uj)? Q- (u0j7 vj) =P- (uﬂm wQ)P* (w2> Uj)'

We need to show that Q(ue,,v;) is a double lattice path from u,, = u,; to v; and Q(ue,,v;)
is a double lattice path from wu,, = ur, to v;, which is similar to the proof of case 1. By
discussing the locations of the intersecting points wy, ws, we could discuss the following
disjoint sub-cases:

case 2.1: wy and wy are both on line x = cyip;

case 2.2: wip is on line x = ¢y + 1 and ws is on line x = cpin;
case 2.3: wy is on line x = c¢y;, and ws is on line © = ¢y + 1
case 2.4: w; and w, are both on line x = ¢, + 1.

Case 2.1: We observe that w; and wy are both on line ¥ = ¢, if and only if b < y; <
y2 < a. In this case w1 = (Cmin, ¥2) and wy = (Cimin, ¥1); see Fig. 2.9. Since d; < y; < 2 < a
and dy > y2 > y1 > b, Q(u,,,v;) and Q(u,,,v;) are double lattice paths.

Case 2.2: We observe that w; is on line © = cyi, + 1 and wy is on line x = ¢, if and
only if b < y; and yy < a < y2. In this case w; = (¢in + 1,a) and wy = (Cin, ¥1); Se€
Fig. 2.10. Note that Q(us,;,v;) and Q(u,;,v;) are double lattice paths. This is guaranteed
by the assumption b < y; and y4 < a < yo. To be precise, d; < ys holds because d; <
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Q(uo;,v5)

F1GURE 2.9. The involution f for case 2.1 when the minimal of P is a pair
(Cmin, (Y1, 2)) and both wy, we are on line & = cpiy.

and y; < y9; Y3 < dy holds because y3 < a and a < y < ds; b < y; and a > y4 hold because
of the assumption.

P(u‘lrj7vj) Q(’U‘alyv )
I I da | I I I dsy | [
I I I [
I Y2 I | Y2 I
1 ! LS !
w1 w1
I I f I [
I I S I [
! w2 | Ya ! w2 !
I b I I I I
I I I | di 1
Lo [ Lo ys
I I I I I I S
x - x xT x

F1GURE 2.10. The involution f for case 2.2 when the minimal of P is a pair
(Cmin, (Y1, Y2)) and wy is on line & = ¢y + 1, we is on line 2 = ¢yiy.

Case 2.3: We observe that w; is on line = ¢, and ws is on line x = ¢y, + 1 if and
only if y3 < b < y3 and a > yo. In this case w; = (Cmin, ¥2) and wy = (Cmin + 1,0); see
Fig. 2.11. Note that Q(us,;,v;) and Q(u,;,v;) are double lattice paths. This is guaranteed
by the assumption y; < b < y3 and a > y,. To be precise, dy > y; holds because dy > s
and yo > y1; di < y4 holds because di < y1 < b < y4; a > y and b < y3 hold because of
the assumption.

Case 2.4: We observe that both wy,ws are on line x = ¢, + 1 if and only if ¢y < b < y3
and y; < a < yo. In this case w; = (Cmin + 1,a) and wy = (cpin + 1,0); see Fig. 2.12.
Note that Q(u,,,v;) and Q(u,,,v;) are double lattice paths. This is guaranteed by the
assumption y; < b < y3 and y4 < a < yo. To be precise, dy < ys < a holds because
di <yp <b<ys<a;and b < y3 < do holds because b < y3 < a < ys < ds.

For each case (case 1 or case 2.1-2.4), it is clear that (7, P) — (0, Q) = f((w,P)) is an
involution which preserves the weight of the double lattice path and changes the inversion
of the permutation by 1. Furthermore, f is closed within all non-separable g-tuples of
double lattice paths that belong to the same case, because two intersecting points wy, ws
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Q(uo‘j ) Uj)
| do |

Cmin

F1GURE 2.11. The involution f for case 2.3 when the minimal of P is a pair
(Cmin, (Y1, y2)) and wy is on line & = ¢pin, wo is on line & = ¢y + 1.

Q(uo; i)
Iorda
. [
I Y2 wq |
~ I

[
\

FI1GURE 2.12. The involution f for case 2.4 when the minimal of P is a pair
(Cmins (Y1, Y2)) and wy, wy are on line = ¢y, + 1.

are fixed with respect to f and the minimum of Q is also the pair (cumin, (y1,%2)); see
Fig. 2.9-2.12.

Example 15. In example 13 we have discussed the non-separable double lattice paths in
Fig. 2.0. In this case, ¢y = 0 and the minimum is (0, (3,5)). Two double lattice paths
P(ug,va), P(ug, v1), after the involution f, are Q(us,vs), Q(us,vy) shown in Fig. 2.13,
while Q(uy,v3) = Pluy,vs). We mark two intersecting points wy, ws in Fig. 2.13 and both
P, Q belong to case 2.3.

Proof of Theorem 2. From (2.5) and the involution f : (7, P) — (o, Q) in subsection 2.3,
we find that only the generating function for all pairs (id, P) where P is any separable
g-tuple of double lattice paths, is remained on the right hand side of (2.5). In combination
of (2.6), (1.2) follows immediately.

Proof of Corollary 3. We refer the readers to Chapter 7 of [13] for a full description of
the exponential specialization. Let [xixs---x,]f denote the coefficient of xyxy -+ -, in f.
Then the exponential specialization ex of the symmetric function f is defined as

ex(f) = Y levw w1

n!
n>0
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Q(u1,v3)

y ul v1 Yy U Q(uz,vg)

1

us

0 z 0 T
-3 -2 -1 0 1 2 3 4 5 6 -3 -2 -1 0 1 2 3 4 5 6

FIGURE 2.13. A non-separable triple Q of double lattice paths with o = 321
that uniquely corresponds to the pair (m,P) under the involution f, where
P is given in Fig. 2.6 and m = 231.

and ex; (f) = ex(f)i=1. Let N = |\/u| and a;; = |©,#0O,|, then one has

f)‘/“ N f®i#®j
ex(prr (X)) =17, ex(sx/ (X)) = T t™ and ex(sepe,(X)) = =
! bJe

£003
Consequently (1.3) follows directly after we apply ex; on both sides of (1.2).

3. APPLICATION TO THE ENUMERATION OF m-STRIP TABLEAUX

We will count the number of m-strip tableaux by applying Corollary 3. It should be
pointed out that the enumeration of 2k-strip tableaux is a direct consequence of Theorem 1;
see [8]. In [12], Morales, Pak and Panova also found that the enumeration of 2k-strip
tableaux can be simplified by applying Lascoux-Pragacz’s theorem [10], or more generally,
Hamel and Goulden’s theorem (Theorem 1).

3.1. The m-strip tableaux. Baryshnikov and Romik [2] counted the number of m-strip
tableaux as a generalization of the classical formula from D. André [1] on the number of
up-down permutations.

Definition 3.1 (m-strip tableaux). An m-strip diagram D,,();ji) contains three parts:

head )\, tail it and body. The body of an m-strip diagram consists of an elongated hexagonal
shape with n columns, where the numbers of boxes in the n columns are

m—+1 m—+1 m+1 m+1
) +1,....om—=—1mm,....mm—1,..., 5 +1, | —| .

2 2 2

length: LmT*lJ length: LmT*lJ

The last |(m—1)/2] columns forms a standard diagram, while the first | (m—1)/2] columns,
after rotating by 180 degrees in the plane, forms a standard diagram. The columns where
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each contains m boxes forms a skew diagram of shape

(”_%mT_lJ n—z{mT_lJn—z{mT_lJ —1,...,2,1)/@—2{"17_1 —1,...,2,1).

-

length: m

The head X and tail fi are standard diagrams of length at most |m /2] that are rotated and
connected to the body by leaning against the sides of the body. The empty partition (0)
is always denoted by @ and an m-strip tableau is a standard Young tableau of the m-strip
shape.

Remark 3.1. Our definition of m-strip diagrams is slightly different to the one in [2]
because [2] contains a minor typo on the number of bozes in the leftmost and the rightmost
columns of any m-strip diagram. Our notation Dm(S\; i) is the notation D in [2] and we
find it more convenient to use Dm(S\; i) to represent some m-strip diagrams for small m.

Example 16. See Fig. 3.1 for an example of 6-strip diagram with head partition A and
tail partition [ from [2]. The standard diagrams of X = (3,1), it = (2,2) are rotated and
attached to the body of the 6-strip diagram.

A=(3,1)

l - B

fP— o —

fe—

n columns n columns

Tm boxes
f

»
»

<

n columns

f—= —

= <212)

FIGURE 3.1. A 6-strip diagram Dg(X; 1), a 2-strip diagram Dy((q); (p)) and
a 3-strip diagram Ds3((q); (p)) (left, middle, right).

To avoid confusion, we adopt the definitions and notations of Euler numbers and tangent
numbers from [2]. A permutation 7 = mmy---m, € 5, is called an up-down permutation

if 1 < my > m3 < my>---. It is well-known that the exponential generating function of
the numbers A,, of up-down permutations of [n] = {1,2,... ,n} is

xn
(3.1) ZA”E =secx + tanz.

n>0
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This is also called André’s theorem [1], which connects the numbers A, with the Euler
numbers F, and tangent numbers T, by the Taylor expansions of sec z and tan x, that is,

& (—1)”E2n1'2n > Tnxanl
SeC[E:ZW and taanZm.
n=0 n=1
This implies that
(32) Agn = (-1)”E2n and AQn—l = Tn

It should be mentioned that Euler numbers are defined differently in some literature [10, 13].

It is clear that an up-down permutation of [2n] can be identified as a 2-strip tableau of
shape Dy (@; @). By thickening the 2-strip diagram, Baryshnikov and Romik [2] introduced
the m-strip diagram and enumerated the m-strip tableaux via transfer operators, which
proved that the determinant to count m-strip tableaux has order |m/2]. This is certainly
to their advantage that Baryshnikov and Romik’s determinant for (2k + 1)-strip diagrams
is much simpler than the one directly from Hamel and Goulden’s theorem (Theorem 1).
We next recall the Baryshnikov and Romik’s determinant for the m-strip tableaux. We
define the numbers

. (2" - 1A,
A == — )n
and A, o — 1)’

1 ATL A ATL

and denote the head Young diagram by A = (A, Ag, ..., Ax) and the tail Young diagram
by it = (fi1, fi2, - - -, fir.) where k = |m/2]|. For any non-negative integers p,q, we denote
by an2(p,q) and «, 3(p,q) the number of 2-strip tableaux of shape Dy((q); (p)) and the
number of 3-strip tableaux of shape D3((q); (p)) where the empty partition (0) is denoted
by &. In other words,

fD2((<1);(P)) fDB((Q)§(P)) )

ana(p,q) = and oy, 3(p,q) =

In particular, «,2(0,0) = As, and some values of «, 3(p,q) are given in Theorem 10.
Note that an2(p,q) = an2(g,p) holds for any non-negative integers p and ¢. This is
true because for any standard Young tableau T' of shape Dy((q); (p)), if we replace every
entry w of T' by 2n 4+ p + ¢+ 1 — w and flip the diagram Ds((q); (p)) upside-down and
reverse it left-to-right, we obtain a standard Young tableau of shape Dy ((p); (¢)). Similarly
an3(p, ) = an3(q, p) holds for any non-negative integers p and ¢. Furthermore, we define
the numbers X, 1(p, q) and Ya, 2(p, q) as below:

an3(p, q)
In+p+q—2)

an2(p, q)
(2n+p+q)!

X2n71(p7 Q> = and 1/271*2(]77 Q) = (
The numbers Xo,_1(p, q), Yon—2(p, q) are the same as the ones in [2], while our notation
an2(p, q) is ay, in [2], because we need the parameters p, ¢ to describe the thickened strips
later. For the readers’ convenience, we should mention that the left 2-strip diagram in Fig.
4 of 2] should be the middle one in Fig. 3.1. Baryshnikov and Romik proved that



OUTSIDE NESTED DECOMPOSITIONS AND SCHUR FUNCTIONS 27

Theorem 9 ([2]). Let Ly = X+ k —i and M; = ji; + k — i for 1 <i < k = [m/2|. Then
the number of standard Young tableaux of shape D,,(\; i) is given by

(34) P00 = (—1)O|D, (A )| det[Xan i (Li, My)JE;_y if m =2k or by
(3.5) £ = (1)) D, (s )] det[Vonmst (Li, My)E .y if m = 2k + 1.

t,j=1

Remark 3.2. Theorem 9 is a combination of Theorem 4 and 5 in [2]. Here we use the com-
binatorial interpretations of a, 2(p, q), an 3(p, @) to introduce the numbers Xon_1(p, q), Yon—2(p, q),

whose expressions in terms of the numbers A;, A; and A; can be derived by the recursions
of ana(p,q) and an, 3(p,q). Here we omit the computational details.

Baryshnikov and Romik [2] also presented some explicit formulas for small m. We
will establish Theorem 10 by decomposing 3-strip tableaux directly and by choosing two
different outside nested decompositions respectively for 4, 5-strip tableaux.

Theorem 10 ([2]). Some numbers of 3-strip tableauz are

3.6 03(0,0) = fP@2) = =
( ) a 73( ) ) f (2n _ 1)!2211—2 22n—2 ?
_ ¢Ds((1);2) _ (?)n — 1)'Tn . (3” — 1)!A2n_1
(3'7) an,3(07 1) =/ - (277, _ 1)!2211—1 - 92n—1 )
) 3n)(22t — 1T, a
(3.8) Oén,?)(l, 1) _ ng((l),(l)) — ( n) ( ) = (371)!142”_1'

(2n — 1)122n=1(22n — 1)
Some numbers of 4-strip tableaux are

. 4dn — 2 4n — 2 Ay 1 A
3.9) fPal@9) — T2 FEop_9Fs, = (4n — 2)!det | 21 “22n
(39) 1 <2n—1) n o —2) TR (4n —2)lde Asn—o Agno1 |7
(3.10)

Pa((1): 4dn 4dn A A
4((1);(1)) — 2 | 12n 12042
f (271) Es, (271 2) Ean—9FEoy 10 = (4n)! det { Ly oy Ay, } ,

and the number of 5-strip tableaux without head and tail is

: 5n — 6)! T2
3.11 Ds(2:2) = ( = = (5n — 6)! det
( ) f ((2n _ 3)!)2 24n—6(22n—2 _ 1) ( n ) €

3.2. Proof of Theorem 9 and Theorem 10.

1{127173 14:12n3:|
A2n73 A2n73

3.2.1. Proof of (3.4). We count the number fP*(A) of 2k-strip tableaux by choosing
an outside decomposition ¢ = (61,0s,...,0;) of the 2k-strip diagram ng(j\;/]), which
is a special outside nested decomposition without common special corners. Given a 2k-
strip diagram ng(S\; i), we can peel this diagram off into successive maximal outer strips
01,05, ...,0 beginning from the outside; see the left one in Fig. 3.2.

We recall the numbers L; = S\Z +k—tand M; = i; + k—1, for 1 < i < k. In the
outside decomposition ¢, every strip 6; is a 2-strip of (n — k + 1) columns, with head
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: 02
[ 03
O3 ® 0
A=(3,1) ) A=(421) 4
rJ 0, ® ra
ri rH 0 . T—J T—A
BypuBgpup I re=ypesypus
andiandka oo [ [ | 1
rJ fi ri 0. ® rJ rJ r%
.l 4 ri -y r%
e 1
. s
» | 01 =22 0, A=331)
03 0> 03 02

FIGURE 3.2. The outside nested decomposition ¢ = (#1,60s,603) that we
choose for the 6-strip diagram Dg((3,1);(2,2)) (left) and the outside
nested decomposition that we will not choose for the 7-strip diagram
D?((47 2a 1)a (3? 37 1)) (I’lght)

partition (L;) and tail partition (My_;;1). The number of such tableaux are denoted by
Oén_k_|_1,2(Li,M]€_i+1), that iS, fei = Oén_k_|_1,2(Li,M]€_i+1). By Definition 19, we see that
the thickened cutting strip H(¢) is a 2-strip of (n — k 4+ 1) columns, with head partition
(Ly) and tail partition (M;). So it follows that 6,#6; is a 2-strip diagram with (n —k+1)
columns, with head partition (L;) and with tail partition (Mj_;,). Consequently, f#% =
Qpr12(My— i1, Li) = ap—gr12(Li, My—j41). By Corollary 3 we know that the number
fParN) of standard Young tableaux of 2k-strip shape with n columns, is expressed as a
determinant where the (i, j)-th entry is ay,—g112(Li, My—j41)/(2n—2k+L;+My_j11+2)! =
XQn—2k+1(Li; Mk—j—i—l)' That is to say,

FPHOE — Dy (A; )] det[Xon-ak41(Lis Mi— )15

4,j=1

= (= 1)) [Dar(3 B)]! det[Xon-zit (Li, My

i,j=17

which is (3.4).

3.2.2. Proof of (3.5). We observe that any outside decomposition of (2k + 1)-strip diagram
will not reduce the order of the Jacobi-Trudi determinant in Theorem 4 because the minimal
number of strips contained in any outside decomposition is exactly the number of columns
in any (2k + 1)-strip diagram Doy 1(A; f1); see the outside decomposition of the 7-strip
diagram D7((4,2,1);(3,3,1)) in Fig. 3.2.

Given a (2k + 1)-strip diagram D2k+1(5\; fi), we can peel this diagram off into successive
maximal outer thickened strips O, O, ..., O beginning from the outside; see Fig. 3.3.
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O3

A= (4,2,1) A= (4,2,1) A=(4,2,1) [ ot

fi=(3.31) fi=(3.31) fi=(3.31)

1

O O3

FIGURE 3.3. The outside nested decomposition ® = (01,05, 03) of the
7-strip diagram D7((4,2,1);(3,3,1)) where each common special corner is
marked by a black square in the thickened strip.

Consider the outside nested decomposition ® = (01, 0,,...,0y;), every thickened strip ©;
is a 3-strip of (n—k+1) columns, with head partition (L;) and tail partition (My_;41). The
number of such tableaux are denoted by o, _113(Li, My_i1), thatis, f€ = o, p1.3(Lis My_i11).
By Definition 1.9, we see that the thickened cutting strip H(®) is a 3-strip of (n — k + 1)
columns, with head partition (L;) and tail partition (A;). So it follows that ©,#0; is a
3-strip diagram with (n — k + 1) columns, with head partition (L;) and with tail parti-
tion (Mk,jJrl). Consequently, f@i#@j = Oénkafl,S(MkfjJrl;Li) = Oén,kJrLg(Li, Mk,jJrl). By
Corollary 3 we know that the number fP2++1#) of standard Young tableaux of (2k + 1)-
strip shape with n columns, is expressed as a determinant where the (i,j)-th entry is
an—k+1,3(Li7 Mk_j+1)/(3n — 3k + Lz + Mk—j+1 + 1)' - }/271—21@([/1‘, Mk—j-f—l)' That is to say,

SR8 = Dy 3 (X; )|t det [ Voo (Liy Mi—j1)]F52
k ~
= (= 1)) [Py (A 1)1 et [Yaoi (L, M) ¥,
which is (3.5).

3.2.3. Proof of (3.6)-(3.8). Here we need the parameter n to describe the number of
columns when we decompose the 3-strip diagrams. So we set

D3, o = D3(2;9), Ds,1 = Ds((1);9),

D3, =D3(2; (1)), Dz =Ds((1);(1)).
and let Cs, denote a 3-strip diagram which is obtained by adding a new box to the right
of the topmost and rightmost box of D5(2; (1)); see Fig. 3.5. First we have two simple
observations.
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Dan—2 =Ds(D:D)  D3npq =D3(D5(1)) Dan1 =Ds(1);)  Ds((1); (1)) = Dsn Can

FIGURE 3.4. 3-strip diagrams

Lemma 11. The numbers fP3—2, fPsn-1 and fP3n satisfy
(3.12) (3n _ 1)f’D3n72 _ 2fD3nfl’
(3.13) (3n)fD3"‘1 — ngn + ngn‘

Proof. Let 7T, denote the set of all standard Young tableaux of shape . Then, in order to
prove (3.12), we will establish the bijection

(3.14) [3n = 1] x Tpy,_, = Ty, UTps,

-
Given a pair (7,4) where ¢ € [3n — 1] and T is a standard Young tableau of shape Ds,, o
with entries from the set [3n — 1] — {i}. Suppose that the rightmost and topmost box «
of T has entry ¢. If i < ¢, then we put a box with entry ¢ on the top of box «, which
gives us a standard Young tableau of shape Ds,,_; with entries from 1 to 3n — 1. Otherwise
we put a box with entry ¢ to the right of box «, which, after transposing the rows into
columns, is a standard Young tableau of shape D3, ; with entries from 1 to 3n — 1. It is
clear that this procedure is invertible, so the bijection (3.14) follows. Furthermore, it holds
that fP%-1 = fPsi-1 since for any standard Young tableau of shape Ds,_1, if we replace
every entry ¢ by 3n — ¢ and flip the diagram Ds,,_; upside-down and reverse it left-to-right,
we obtain a standard Young tableau of shape Dj, ;. In combination of (3.14), it follows
that (3.12) is true.
In order to prove (3.13), we next establish the bijection

(3.15) [3n] x Tp; | — Tps,UTes,

which is analogous to (3.14). Given a pair (7', 4i) where ¢ € [3n| and T is a standard Young
tableau of shape D}, _, with entries from the set [3n] — {i}. Suppose that the rightmost
and topmost box « of T" has entry ¢. If 7« < ¢, then we put a box with entry 7 on the top
of box «, which gives us a standard Young tableau of shape D3, with entries from 1 to
3n. Otherwise we put a box with entry ¢ to the right of box «, which is a standard Young
tableau of shape Cs,, with entries from 1 to 3n. This implies that (3.15) is a bijection, thus

in view of fPsn-1 = fPin-1(3.13) holds. O
By Lemma 11 it suffices to count the numbers fP3»-2 and f%». Consider the boxes

(IL,n—1),2,n—2),...,(n—1,1)
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of the 3-strip diagram Ds,, 5, one of these boxes has the minimal entry 1 for any standard
Young tableau from Tp,, ,. Let Ds,_o,; be the 3-strip diagram Ds,,_, after removing the
box (i,n — ). Then we have

Lemma 12. For 1 <i<n — 1, the numbers fP—2i satisfy

(3.16) (371 _ 2)fD3n—2,i _ fD3n72 4 (?;Z’ o 12) fDBi—l f’DSn—Si—l.
Proof. Let S denote the set of all (37 — 1)-subsets of [3n — 2|, we aim to construct the
bijection

(3.17) [3n — 2] X Tpy, o, = Tpyn_oU(S X Tos,
from which (3.16) follows immediately. Given a pair (7,7) where r € [3n — 2] and T"is a
standard Young tableau of shape D3, o, with entries from the set [3n — 2] — {r}. Suppose
that the entries of box (i + 1,n — i) and box (i,n — i+ 1) are ¢; and ¢ in T, we set
¢ = min{q,q}. If r < g, then we add a box (i,n — i) with entry r to 7', which is a
standard Young tableau of shape Ds,,_s.

If » > ¢ = ¢, then we consider a segment of 7" from the starting box of Ds,,_5; to box
(t+1,n —1i) and we add a box with entry r to the right of box (i + 1,n — 7), which, after
transposing the rows into columns, leads to a standard Young tableau of shape D3, 5,
with entries coming from a (3n — 3¢ — 1)-subset A of [3n — 2]. Moreover, the segment of
T from box (i + 1,n — i + 1) to the ending box of D3, o, is a standard Young tableau of
shape Dj; | with entries coming from the complement set A° of A with respect to [3n — 2].

If » > ¢ = go, then we consider a segment of 7" from box (i,n — i + 1) to the ending
box of Ds,_5,; and we add a box with entry r right below the box (i,n — ¢ + 1), which
leads to a standard Young tableau of shape Dj, , with entries coming from a (3i — 1)-
subset B of [3n — 2]. Moreover, the segment of 7" from the starting box of Ds,_2; to box
(14+1,n—i+1), which, after transposing the rows into columns, is a standard Young tableau
of shape D3, _,,_, with entries coming from the complement set B¢ of B with respect to
[3n — 2].

Conversely, given a standard Young tableau Ty of shape D3, _o, we set r to be the entry
of box (i,n — i) in Ty and after we remove box (i,n — i) from Tj, we obtain a standard
Young tableau of shape Ds,,_5,;. Given a triple (D, T},T,) where T; is a standard Young
tableau of shape Dj, ; with entries from D € S, and 75 is a standard Young tableau of
shape D3, 5, with entries from the complement set D°.

Suppose that the entry of box (7, 1) in 77 is g3 and the entry of box (n—1,1) in T is g4,
if g3 > q4, we remove the box (n —i+ 1,1) of Ty, then transpose it from columns into rows
and put the box with entry ¢4 to the left of box (i + 1,1) of Tj. This gives us a standard
Young tableau of shape Ds,, o, such that the entry of box (i,n — i + 1) is larger than the
one of box (i + 1,n —¢) and we choose r to be the entry of box (n —i+ 1, 1) of T3, so that
> q4.

If g3 < q4, we transpose T from columns into rows, then put its rightmost and topmost
box right below the box with entry g3 after we remove the box (i 4+ 1,1) of 7. This gives
us a standard Young tableau of shape Ds,_5; such that the entry of box (i,n —i+ 1) is

X Tps

3n—3i—1 )’
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smaller than the one of box (i + 1,7 — i) and we choose 7 to be the entry of box (i + 1,1)
of Ty, so that r > g3.

Since all cases are disjoint and cover all possible scenarios, (3.17) is a bijection. In view
of fPsi-1 = fPsi-1 (3.16) follows. O

Example 17. For i = 2, we consider the pairs (T1,4) and (T3,6). Since 4 < min{6, 8},
we put a box with entry 4 to Ty. Since 6 > min{4,8}, we separate Ty of shape D34 into
two standard Young tableauz of shapes D} and Dg.

T 213 213 T 213 203
6|11 4 41611 411 6 411 115
—> —>
71813 718 (13 7|8 (13 6 9 |10
11912 119 (12 11912 8 |12
5|10 510 510 13

FIGURE 3.5. Two examples of the bijection (3.17) in Lemma 12.

Let Cs,,; be the 3-strip diagram Cs,, after removing the box (i,n — ), we can decompose
the skew diagram Cs,, in exactly the same way. So we omit the proof of Lemma 13.

Lemma 13. For 1 <i<n — 1, the numbers i satisfy
Can,i c SN\ 4Cas 4Conosi
(3'18) (3n)f 3n,i — f 3n + 3 f 3lf 3n 31‘
1

With the help of recursions (3.16) and (3.18), we could use the generating function
approach to finally derive the numbers of 3-strip tableaux.
Proof of (3.6)-(3.8). Summing (3.16) and (3.18) over all ¢ gives us

n—1

D3n—2 __ 3n — 2 D3i—1 £D3n—3i—1
(3.19) (2n—1)f _Z(3¢—1>f f
n—1
Can __ 3n Csi £C3n—3:
(3.20) (2n+1)f _;(3i)f fCan=si.

We can translate the recursions (3.19) and (3.20) into two identities of exponential gener-
ating functions. We define that

o fP fE onn
f(x)zzmx , g(a:)zzi(gn_l)!x ; h(x)zz(gn)!x )

n>1 n>1 n>1

From (3.12) we have f(z) = 2g(z). Furthermore, (3.19) is equivalent to f'(z) = 1 + g(x)?
where f(0) = 0. This leads to a unique solution, g(z) = tan(z/2). Together with the
exponential generating function for Ay, _;; see (3.1), we can prove (3.6) and (3.7). Similarly,
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(3.20) is equivalent to —h/(z) = —1 + 2h(z) — h?*(z) where h(0) = 1. This yields a unique
solution .

1 1 1
hiz) = — S —
(z) tanx+x 3x+45glj * '

from which we can derive the numbers f¢» by expanding h(x), i.e.,
(3n)! A, 1
(2n — 1)1(22» — 1)

Together with (3.13) and (3.7), (3.8) is proved.

(3.21) fCan = — (3n)! Agp_y.

3.2.4. Proof of (3.9)-(3.10). For the 4-strip diagram D,(&; &), we choose another outside
decomposition ¢* = (07,05, ...,0;), which is slightly different to the one ¢ = (04,0, ..., 0y)
for the 2k-strip diagram ng(S\; ft). The benefit to make such a slight change is that the
determinant in (3.4) is further simplified, which only has the numbers A; as entries.

We call a 2-strip a zig-zag strip if the corresponding standard Young tableaux are in
bijection with up-down permutations. For instance, the 2-strip diagram Dy (2; @) is a zig-
zag strip and all strips in Fig. 3.6 are zig-zag strips. For the 4-strip diagrams Dy (<; @),

I 14
rhe e e
rhe el e
e e e
3pes Jeae
e r -

FIGURE 3.6. The outside nested decompositions ¢* = (07, 65) of the 4-strip
diagrams Dy(2; &) (left) and Dy((1); (1)) (right).

we can peel each diagram off into successive maximal zig-zag outer strips 07,65, ...,0;
beginning from the outside. See the left one in Fig. 3.6. It is clear that the numbers of
any zig-zag strip 07 or 05 are Euler numbers or tangent numbers. By Definition 1.9 we find
that

f@f - fg* - A2n—17 f@f#@* - A2n—2 and f@%#@* == AQn
By Corollary 3, we can prove (3.9) and (3.10) follows in the same way.

3.2.5. Proof of (3.11). For the 5-strip diagram D5(2; &), we choose another outside nested
decomposition * = (071, 0%, ..., 0O;), which is slightly different to the one ® = (01, 0o, ..., Oy)
for the (2k 4 1)-strip diagram Dayyq(X; fi). The benefit to make such a slight change is
that the determinant in (3.5) is further simplified, which only has the numbers A; and A;
as entries.

We call a 3-strip a zig-zag thickened strip if the number of such 3-strip tableaux is one of
the numbers fP3n-2 fPsn-1 fPsn and fCn . For instance, two thickened strips in Fig. 3.7
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are zig-zag thickened strips. It is clear that the numbers of the zig-zag thickened strips ©7
or ©3 are f%n-3. By Definition 1.9 we find that
f@f _ f@s _ fc3n73 and fGT#@S — f@é#Gf — f,DSnfiS _ fD3((1)§(1))_
By Corollary 3, we can prove that
(5n — 6)! - :
_ 30 B)0 ((fCBn 3)2 _ (fD3((1)’(1)))2).
Combining (3.8) and (3.21), we can conclude that (3.11) is true.

f’D5(®;®)

’
1

O3

o1

.
J

F1GURE 3.7. The outside nested decomposition ®* = (O3, ©3) of the 5-strip
diagram D5(2; @).

ACKNOWLEDGEMENT

The author would like to thank two anonymous reviewers for their suggestions and com-
ments. The author also wants to thank Yuliy Baryshnikov, René Ciak, Michael Drmota, lan
Goulden, Angele Hamel, Christian Krattenthaler, Igor Pak, Dan Romik, Michael Schlosser
and John Stembridge for related discussions and would like to give special thanks to the
joint seminar Arbeitsgemeinschaft Diskrete Mathematik for their valuable feedback. This
work was partially done during the author’s stay in the AG Algorithm and Complexity,
Technische Universitat Kaiserslautern, Germany. The author also thanks Markus Nebel,
Sebastian Wild and Raphael Reitzig for their kind help and support.

The author was supported by the German Research Foundation DFG, JI 207/1-1, the
Austrian Research Fund FWF, Project SFB F50-02/03, and is supported by FWF-MOST
(Austria-Taiwan) project P2309-N35.

4. APPENDIX
4.1. Proof of Lemma 6.

Proof. We shall prove the equivalent statement, namely, if 7 € S, and 7 # id, then any
g-tuple (2.1) of double lattice path is crossing.

First we consider a total order < of all starting points ui,us,...,u, and a total order
< of all ending points vy, v, ..., v, of the double lattice paths. For every i, let z(u;) and
y(u;) denote the z-th coordinate and y-th coordinate of point u;, similarly for x(v;) and
y(v;). We recall that y(u;),y(v;) € {1,00} according to Definition 2.1. We define uy < u;
if and only if one of the following conditions is true:
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(1) oo =y(us) > y(u;) = 1;

(2) y(us) = y(u;) = oo and w(us) > (u;);

(3) ylus) = y(u;) = 1 and x(us) < z(us).
We define vs; < v; if and only if one of the following conditions is true:

(4) 00 =y(vs) > y(vi) = L;

(5) y(vs) = y(vi) = o0 and z(vs) < z(v;);

(6> y(vs) - y(’UZ) =1 and 1’(1}5) > .T(’UZ)
We claim that for any ¢ and s, us < u; holds if and only if v5 < v; holds. The essential reason
for this is the fact that ® is an outside thickened strip decomposition (Definition 1.5), so
when we read the boxes on the bottom perimeter and the left perimeter of the skew shape
A/p in the right-to-left and bottom-to-top order, the starting box of ©4 comes earlier than
the starting box of ©; if and only if us < wu; holds. Since one thickened strip is on the
right side or the bottom side of the other thickened strip; see Definition 1.5, when we
read the boxes on the right perimeter and the top perimeter of the skew shape A/u in the
bottom-to-top and right-to left order, the ending box of ©4 comes earlier than the ending
box of ©; if and only if vy < v; holds. This implies that for any ¢ and s, us < u; holds if
and only if v, < v; holds.

Second, for any 7 such that id # 7m € S, there exist two integers s and ¢ such that
Ur, < Uy, and vy < vs because otherwise it contradicts the assumption 7 # id. We wish
to show that P(u,,,vs) and P(uy,,v;) are crossing, which can be proved by discussing all
cases when one of the previous conditions (1)-(3) for w,, < u,, is true, and one of the
previous conditions (4)-(6) for u; < us is true. So we conclude that if 7 € S, and 7 # id,
then (2.1) is crossing. O

~— —
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