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Abstract. A direct saddle-point analysis (without relying on any modular forms or func-
tional equations) is developed to establish the asymptotics of Fishburn matrices and a large
number of other variants with a similar sum-of-finite-product form for their (formal) gener-
ating functions. In addition to solving some conjectures, the application of our saddle-point
approach to the distributional aspects of statistics on Fishburn matrices is also examined
with many new limit theorems characterized, representing the first of their kind for such
structures.
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1. Motivations and Background

Fishburn matrices, introduced in the 1970s in the context of interval orders (in order the-
ory) and directed graphs (see [1, 18, 23, 24]), are upper-triangular matrices with nonnegative
integers as entries such that no row and no column contains exclusively zeros. They have
been later found to be bijectively equivalent to several other combinatorial structures such
as (2 + 2)-free posets, ascent sequences, certain pattern-avoiding permutations, (2− 1)-
avoiding inversion sequences, Stoimenow matchings, and regular linearized chord diagrams;
see, for instance, [6, 14, 21, 31, 36] and Section 2 for more information.

In addition to their rich combinatorial connections and modeling capabilities, the corre-
sponding asymptotic enumeration and the finer distributional properties are equally enrich-
ing and challenging, as we will explore in this paper. In particular, while the asymptotics
of some classes of Fishburn matrices were known (see, for example, [8, 45]), the stochastic
aspects of the major characteristic statistics on random Fishburn matrices have remained
open up to now.

Zagier, in his influential paper [45] on Vassiliev invariants and quantum modular forms,
derived the asymptotic approximation to the number of Fishburn matrices whose entries
sum to n

[zn]
∑
k>0

∏
16j6k

(
1− (1− z)j

)
= cρn nn+1

(
1 +O

(
n−1
))
,(1.1)

(see OEIS [37] sequence A022493, the Fishburn numbers), where (c, ρ) :=
(

12
√

6
π2 e

π2

12 , 6
eπ2

)
.

Here [zn]f(z) denotes the coefficient of zn in the (formal) Taylor expansion of f and all
A-numbers (followed by six digits) refer to sequences from the OEIS [37]. For conciseness of
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notation and readability, all constant pairs (c, ρ) throughout this paper are generic and may
not be the same at each occurrence; their values will be locally specified.

That the asymptotic approximation (1.1) is remarkable can be viewed in various per-
spectives. First, the Taylor coefficients of the inner product on the left-hand side of (1.1)
alternate in sign, so it is unclear if the coefficient of zn in the sum-of-product expression is
positive for all positive n, much less its large factorial growth order shown on the right-hand
side. Second, since 6

π2 < 1, the right-hand side of (1.1) is exponentially smaller than n!,

which equals [zn]
∏

16j6n

(
1− (1− z)j

)
. More precisely, we will prove that (see Lemma 11

and Proposition 12)

max
16k6n

∣∣∣[zn]
∏

16j6k

(
1− (1− z)j

)∣∣∣ = max
16k6n

[zn]
∏

16j6k

(
(1 + z)j − 1

)
= Θ

(
nn+ 1

2 ρ̂n
)
,

meaning that the left-hand side is exactly of order nn+ 1
2 ρ̂n with ρ̂ := 12

eπ2 = 2ρ. This shows
that there is indeed a heavy exponential cancellation involved in the sum on the left-hand side
of (1.1). Third, in addition to the connection to linearly independent Vassiliev invariants, the
Fishburn numbers have now been known to enumerate many different combinatorial objects;
see Section 2, OEIS sequence A022493 and [4, 6, 8, 9, 13, 14, 16, 18, 31, 32, 34, 36, 44, 45]
for more information. Finally, Zagier’s proof of (1.1) relies crucially on an unusual pair of
identities

(1.2)


e−

z
24

∑
k>0

∏
16j6k

(
1− e−jz

)
=
∑
n>0

Tn
n!

( z
24

)n
,

∑
n>0

Tn
(2n+ 1)!

z2n+1 :=
sin(2z)

2 cos(3z)
,

where the integers Tn’s, known as Glaisher’s T -numbers (see A002439), are defined by the
second identity of (1.2). The first one, due to Zagier, is a consequence of the relation between
the generating function in (1.1) and the “half derivative” of the Dedekind eta-function, partial
summation, Euler’s pentagonal number theorem, functional equations, Dirichlet series and
Mellin transform techniques; see [45, 46]. The asymptotics of Tn is then readily computed
by, say using the singularity analysis (see [20]) on the right-hand side of the second identity,
which, unlike the formal nature of the first, is analytic in |z| < π

6
. What appears to be

more important in subsequent developments is that Tn is essentially the value defined by
the analytic continuation of some Dirichlet series at −2n− 1, and the study of the identities
(1.2) is thus closely connected to algebraic and analytic number theory, in addition to their
hypergeometric q-series nature and resurgence aspect [11]. Some similar pairs of relations
such as (1.2) are now known; see, for example, [5, 26, 39].

Here and throughout this paper, the asymptotic relation

an = bn
(
1 +O

(
n−1
))

is abbreviated as an ' bn.(1.3)

Subsequently in [8], Bringmann–Li–Rhoades established the asymptotic approximation to
the number of primitive row-Fishburn matrices with entries summing to n,

[zn]
∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
' cρn nn+ 1

2 , with (c, ρ) :=
(

12
π3/2 e

−π
2

24 , 12
eπ2

)
,(1.4)
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which confirmed a conjecture by Jeĺınek (Conjecture 5.3 of [31]). Here a primitive row-
Fishburn matrix is a binary upper-triangular matrix without zero rows. Their proof of
deriving (1.4) relies on various properties of the function (σ(q) in [8])

(1.5) R(q) :=
∑
k>0

q
1
2
k(k+1)

(1 + q) · · · (1 + qk)
= 1 +

∑
k>0

(−1)kqk+1
∏

16j6k

(
1− qj

)
,

first appeared in Ramanujan’s lost notebook, with many unusual properties discovered since
Andrews’s paper [2]; see [3, 10] and A003406 for more information. Very roughly, since

[zn]
∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
=

(−1)n

2
[zn]R(1− z)

(according to Equation (2.3) of [8]) and e−z = 1 − z + O(|z|2) for small |z|, the approach
begins by working out the asymptotics of [zn]R

(
e−z
)
. The bridge between [zn]R(1 − z)

and R
(
e−z
)

can then be linked through a direct change of variables and straightforward
arguments because z is very close to zero (the arguments used in [45] and [8] relying instead
on the asymptotics of the Stirling numbers of the first kind); see Section 4.2 for more details.

The asymptotics of [zn]R
(
e−z
)

is derived by first defining the Dirichlet series

D(s) :=
∑
n>1

n−s[qn−1]R
(
q24
)
,

which can be meromorphically continued into the whole s-plane. Since, by standard Mellin
transform techniques (see, e.g., [19]),

[zn]e−zR
(
e−24z

)
=

(−1)n

n!
D(−n),

the crucial asymptotics of D(−n) needed is then based on the relation

D(−s) =
12
√

2

π2

(288

π2

)s
Γ(1 + s)2

((
sin

πs

2

)2

L+(1 + s) +
(

cos
πs

2

)2

L−(1 + s)

)
;(1.6)

here L± are L-series defined from R and a closely related q-series; see [8, 10] and Section 4
for more details.

However, a lot more on the asymptotics and statistics of Fishburn matrices and related
structures has remained unknown, which includes several conjectures and open problems
[8, 31, 41, 45] that are of great interest to the combinatorics and modular-form community.
As apparently general asymptotic techniques are still lacking, we aim to address this gap by
developing a direct, self-contained approach to derive (1.1) and (1.4) in a systematic way
without relying on any functional equations (satisfied by Dirichlet series) or identities such
as (1.2) that are not available in more general contexts with a similar sum-of-finite-product
form for the generating functions.

Our approach is based instead on a fine, double saddle-point analysis and has the additional
advantages of being applicable to a large number of problems whose (formal) generating
functions assume a similar form, some of which are listed as follows.

– Derive the asymptotics of Fishburn and row-Fishburn matrices whose entries belong
to any multiset of nonnegative integers containing 0; in particular, (1.1) and (1.4) by
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Zagier [45] and Bringmann–Li–Rhoades [7], respectively, are reproved; our scheme is
also applicable to more than two dozens of other OEIS sequences; see Section 6.

– Prove a conjecture of Jeĺınek in [31] concerning the asymptotics of self-dual Fishburn
matrices; see Corollary 27.

– Establish the limit distributions of some typical statistics in random Fishburn ma-
trices, which solves particularly an open problem raised by Bringmann–Li–Rhoades
[8] and Jeĺınek [31]; see Theorem 22 and Section 7.

– Determine the typical shapes of random Fishburn matrices, which exhibit an unex-
pected change of limit laws from normal to Poisson when the smallest nonzero entry
is 2; see Theorem 32 and Section 8.

Our approach is best illustrated through the prototypical (rational) sequence

an := [zn]
∑
k>0

∏
16j6k

(
ejz − 1

)
=

(−1)n

2
[zn]R

(
e−z
)
,(1.7)

where R is defined in (1.5), for which we will show inter alia that

an = cρnnn+ 1
2

(
1 +

ν1

n
+
ν2

n2
+O

(
n−3
))
, with (c, ρ) :=

(
12
π3/2 ,

12
eπ2

)
,(1.8)

where ν1 = 24−π2

288
and ν2 = 1

2
ν2

1 ; see (4.1) for an asymptotic expansion. Here the integer
sequence {ann!} corresponds to A158690 in the OEIS. Throughout this paper, we do not
distinguish between ordinary and exponential generating functions, and focus only on the
large-n asymptotics of the coefficients, so whether the sequence is integer or not is immaterial
for our purposes.

Once the asymptotics (1.8) is available, we extend our approach to sequences of the form

[zn]
∑
k>0

d(z)k+ω0

∏
16j6k

(
e(z)j+ω − 1

)α
,(1.9)

for α ∈ Z+ and ω0, ω ∈ C. Here the generating functions d(z) and e(z) are analytic at z = 0
and satisfy d(0) > 0, e(0) = 1 and e′(0) 6= 0.

Our result (Theorem 18) for the general form (1.9) will not only be applied to derive the
large-n asymptotics of many sequences in the literature and the OEIS (see Section 6), but
also be sufficient to re-derive (1.1) because of the identity (in the sense of formal power
series) due to Andrews and Jeĺınek [4]∑

k>0

∏
16j6k

(
1− (1− z)j

)
=
∑
k>0

(1− z)−k−1
∏

16j6k

(
(1− z)−j − 1

)2
.

This and other examples of similar types are collected in Section 6.
In addition to its usefulness in univariate asymptotics, our formulation (1.9) is also effective

in dealing with the limiting distributions of various statistics (bivariate asymptotics) on
random Fishburn matrices with or without restriction on their entries, which describe the
typical shape of random Fishburn matrices.

More precisely, we consider upper-triangular matrices whose entries belong to Λ, a multiset
of nonnegative integers with the generating function Λ(z) = 1 + λ1z + λ2z

2 + · · · . We then
define two classes of matrices: (i) Λ-row-Fishburn ones without zero row, and (ii) Λ-Fishburn
ones without zero row or zero column. The statistics examined and their limit laws are
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summarized in Table 1, where we assume a uniform distribution on the set of all possible
such matrices with the same entry-sum.

Λ(z) analytic
λ1 > 0

Random Λ-row-Fishburn matrices Random Λ-Fishburn matrices

First row sum Zero-Truncated-Poisson(log 2) Normal(log n, log n)

Diagonal sum Normal(log n, log n) Normal(2 log n, 2 log n)

1
2

(
n−#(1s)

) {
Poisson

(
λ2π2

12λ21

)
, if λ2 > 0

degenerate, if λ2 = 0

{
Poisson

(
λ2π2

6λ21

)
, if λ2 > 0

degenerate, if λ2 = 0

Table 1. The various asymptotic distributions of the three statistics in large
random Λ-row-Fishburn and Λ-Fishburn matrices with entries belonging to a
given multiset of nonnegative integers Λ (containing 0 exactly once and 1 at
least once). Here n is the sum of all entries in the matrix.

In particular, when Λ is the set of nonnegative integers, the first row-size in random
Fishburn matrices also arises in many different contexts under different guises, the first being
in the form of leftmost chord in regular linearized chord diagrams [41]; see Section 2.3 for more
information. Our limit results thus have many different interpretations and implications.

The proof of these limit laws requires the full power of our setting (1.9) where some
parameters or coefficients are themselves complex variables, as well as the Quasi-Powers
Framework (see [20, 27, 28]), which is a simple synthetic scheme for deriving asymptotic
normality and some of its quantitative refinements.

From Table 1 we see that in a typical random Λ-Fishburn matrix (when all matrices of the
same entry-sum are equally likely), entries equal to 1 are ubiquitous, those to 2 appear like
a Poisson distribution, and the rest is asymptotically negligible. Thus such random matrices
have little variation as far as the distribution of entries is concerned. In other words, a
random Λ-Fishburn matrix is asymptotically close to its primitive counterpart in which only
0 and 1 are allowed as entries. Regarding a Fishburn matrix of size n as an integer partition
of n arranged on upper-triangular square matrices without zero row or column, we see that
the number of 1s in random Fishburn matrices is very different from the number of 1s in
random integer partitions, which has an exponential distribution in the limit.

What happens if we drop the omnipresent entry 1, assuming that all Λ-Fishburn matrices
(of the same size) whose smallest nonzero entries are 2 are equally likely? The resulting
random matrices turn out to be more interesting, exhibiting less expected behaviors. More
precisely, we extend further our study in Section 8 to the situation when λ1 = 0 and λ2 >
0 in Λ-Fishburn matrices, which has a very similar analytic context to the self-dual (or
persymmetric) Fishburn matrices when λ1 > 0; the latter was considered in [31] for the
cases when Λ = {0, 1} and Λ = Z>0. We adopt the same framework (1.9) and address the
asymptotics when λ1 = 0 and λ2 > 0. Such a formulation is, as in the case of λ1 > 0,
not only useful for the asymptotic enumeration of matrices of large size, but also practical
in characterizing the finer stochastic behaviors of the random matrices, whether they are
Fishburn with λ1 = 0 and λ2 > 0 or self-dual Fishburn with λ1 > 0.
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Λ(z) analytic
Random Λ-Fishburn matrices
with λ2i−1 = 0 for 1 6 i 6 m

and λ2, λ2m+1 > 0

Random self-dual Λ-Fishburn
matrices with 1s (λ1 > 0)

First row sum Normal(log n, log n) Normal(log n, log n)

Diagonal sum Normal(2 log n, 2 log n) 2 · Normal(log n, log n)

# smallest
nonzero entries



1
2
n− 3

2
· Normal(τ

√
n, τ
√
n),

if m = 1
1
2
n− 2 · Poisson(λ4π

2

6λ22
),

if m > 2, λ4 > 0, n even
1
2
(n− 2m− 1)− 2 · Poisson(λ4π

2

6λ22
),

if m > 2, λ4 > 0, n odd

degenerate, if λ3 = λ4 = 0


n− 2 · Poisson

(
λ2
λ1

log 2
)

∗ 4 · Poisson
(
λ2π2

12λ21

)
,

if λ2 > 0

degenerate, if λ2 = 0

Table 2. The asymptotic distributions of the three statistics in large random
Λ-Fishburn and self-dual Λ-Fishburn matrices with entries belonging to a given
multiset of nonnegative integers Λ (containing 0 exactly once and with or with-
out 1s). Here n is the sum of all entries in the matrix, and τ := λ3π

2
√

3λ
3/2
2

. The

symbol X ∗ Y stands for the convolution of two distributions.

While the logarithmic behaviors in the first row sum and the diagonal sum are similar
as in Table 1, the limit laws of the occurrences of the smallest nonzero entries now behave
differently, notably in the case when 2 is the smallest nonzero entry. Roughly, the periodicity
resulted from the prevalent entries 2 in the class of Λ-Fishburn matrices without entries 1
does change drastically the behavior of non-smallest positive entries, namely, the limit law
for the sum of non-smallest positive entries changes from a bounded Poisson distribution to
a normal distribution with mean and variance both asymptotic to τ

√
n (or indeed a Poisson

distribution with unbounded mean τ
√
n; see Section 8.2).

Our formulation and results include as a special case the asymptotic approximation to
self-dual Fishburn numbers (8.5), confirming another conjecture in [31]; see Sections 5 and
8.

This paper is structured as follows. In the next section, we outline the background on
Fishburn matrices, and then derive the generating functions that will be analyzed in later
sections. Then we describe the saddle-point method in detail in Section 3 which will then
be used and modified throughout this paper, with the finer asymptotic expansions briefly
discussed in Section 4. The general framework (1.9) is examined in detail in Section 5 by
extending the saddle-point analysis of Section 3. Asymptotics of restricted Fishburn matrices
as well as other univariate examples are collected and discussed in Section 6. We then turn
to bivariate asymptotics in Section 7 and study the asymptotic distributions of statistics on
random Fishburn matrices such as those given in Table 1. The extension of (1.9) to the case
when [z]e(z) = 0 and [z2]e(z) > 0 is examined in Section 8, together with univariate and
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bivariate applications (as shown in Table 2). We then conclude this paper in Section 9 with
some perspectives on how our approach may be further extended to other frameworks.

Notations. As mentioned at the beginning of this section, (c, ρ) is used generically and
will always be locally defined. Other generic and mostly local symbols include ci, c(·), ε,
f , and an; their values will be specified whenever ambiguities may occur. Furthermore, the
notation an � bn means that the ratio an/bn of the two sequences remains bounded and
nonzero as n tends to infinity.

2. Fishburn matrices and related combinatorial objects

We describe Fishburn matrices in this section, together with some of their variants and
generalizations. We also derive the bivariate generating functions for some statistics that
will be examined in more detail in later sections.

In what follows, the size of a matrix is defined to be the sum of all its entries. Similarly,
the size of a row or a column or the diagonal is the respective sum.

Definition 1 (Fishburn matrix). A Fishburn matrix is an upper-triangular square matrix
with nonnegative integer entries such that no row and no column consists solely of zeros.

For example, all 15 Fishburn matrices of size 4 are depicted in Figure 2.1.

(4)
(

1 2
1

)(
2 1

1

)(
1 1

2

)(
2 0

2

)(
3 0

1

)(
1 0

3

)
(

1 1 0
1 0

1

)(
1 0 1

1 0
1

)(
1 0 0

1 1
1

)(
2 0 0

1 0
1

)(
1 0 0

2 0
1

)(
1 0 0

1 0
2

)(
1 1 0

0 1
1

)1 0 0 0
1 0 0

1 0
1


Figure 2.1. All 15 Fishburn matrices of size 4. The occurrence of 1 is seen to
be predominant.

As a succinct representation tool for interval orders (see [18, 23]), Fishburn matrices
(named so in [9]; called IO-matrices in [23], characteristic matrices in [17, 18], and composi-
tion matrices in [12]) offer not only algorithmic but also combinatorial advantages, and over
the years their study was largely enriched by the corresponding developments in combinato-
rial enumeration and bijections, following notably the paper by Bousquet-Mélou–Claesson–
Dukes–Kitaev [6]. In particular, the useful database OEIS [37] played a key role in linking
various structures in different areas, some of which will be briefly described later.

Closer to our interest here, the enumeration of Fishburn matrices of a given dimension
was already investigated in the early papers [1, 23], and recursive algorithms were later
proposed for computing matrices of a given size (see e.g. [25, 41]), culminating in the definitive
work of Zagier [45], where, through the use of generating functions, effective asymptotic
approximations (1.1) for Fishburn matrices of large size are derived.

2.1. Fishburn matrices and their variants. Recall that the Fishburn numbers (A022493)
count Fishburn matrices of a given size and can be computed by the generating function∑

k>0

∏
16j6k

(
1− (1− z)j

)
= 1 + z + 2z2 + 5z3 + 15z4 + 53z5 + 217z6 + · · · .
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From a combinatorial viewpoint, the Fishburn numbers also enumerate several seemingly
unrelated structures, some of which are listed as follows; see [6, 9, 13, 14, 16, 18, 21, 31, 34,
36, 44] for the bijective and algebraic proofs of these equinumerosity.

• Ascent sequences of length n, which are sequences of nonnegative integers (x1, . . . , xn)
such that for each i, 0 6 xi 6 1 + |{j : 1 6 j 6 i− 2 and xj < xj+1}|.
• (2− 1)-avoiding inversion sequences of length n: these are sequences (x1, . . . , xn)

such that 0 6 xi < i and there exists no i < j such that xi = xj + 1.
• (2|31̄)-avoiding permutations of n elements, which are permutations π without sub-

sequence πiπi+1πj such that πi − 1 = πj and πi < πi+1.
• (2+2)-free posets of n elements : these are posets (P,≺) with interval representations,

namely, for each x ∈ P , a real closed interval [`x, rx] is associated to x such that x ≺ y
in P exactly when rx < `y.
• Stoimenow matchings of length 2n: A matching of the set [2n] = {1, 2, . . . , 2n} is a

partition of [2n] into subsets (called arcs) of size exactly two. A Stoimenow matching
is a matching without nested pair of arcs such that either the openers or the closers
are next to each other.
• Regular linearized chord diagrams of length 2n: A regular linearized chord diagram

is a fixed-point free involution τ on the set [2n] such that [i, i + 1] ⊂ [τ(i + 1), τ(i)]
whenever τ(i+ 1) < τ(i).

Two variants of Fishburn matrices, row-Fishburn matrices and self-dual Fishburn matrices
were studied by Jeĺınek [31] during his study on refined enumeration of self-dual interval
orders. Row-Fishburn matrices are upper-triangular ones with nonnegative integer entries
such that no row is composed solely of zeros. The corresponding generating function satisfies∑

k>0

∏
16j6k

(
(1− z)−j − 1

)
= 1 + z + 3z2 + 12z3 + 61z4 + 380z5 + 2815z6 + · · · ,(2.1)

where the coefficient of zn equals the number of row-Fishburn matrices of size n.
Furthermore, a matrix is primitive if all entries are either 0 or 1. Substituting z by z

1+z

leads to the generating function for the primitive row-Fishburn number (A179525)∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
= 1 + z + 2 z2 + 7 z3 + 33 z4 + 197 z5 + 1419 z6 + · · · .(2.2)

Reversely, (2.1) can be obtained from (2.2) by substituting z with z
1−z .

On the other hand, a Fishburn matrix is self-dual if it is persymmetric, or symmetric with
respect to the northeast-southwest diagonal. The generating function of primitive self-dual
Fishburn matrices counted by the size (see also [31]) is∑

k>0

(1 + z)k+1
∏

16j6k

((1 + z2)j − 1) = 1 + z + z2 + 2z3 + 3z4 + 6z5 + 13z6 + · · · ,

and the one of all self-dual Fishburn matrices is∑
k>0

(1− z)−k−1
∏

16j6k

((1− z2)−j − 1) = 1 + z + 2z2 + 3z3 + 7z4 + 13z5 + 33z6 + · · · ,

so that 7 out of the 15 Fishburn matrices of size 4 are self-dual, as can be readily checked
with Figure 2.1.
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2.2. Fishburn matrices with entry restrictions. We now extend the matrices by allow-
ing more flexible entries. Let Λ be a multiset of nonnegative integers with the generating
function

Λ(z) := 1 +
∑
λ∈Λ

zλ = 1 + λ1z + λ2z
2 + · · · .(2.3)

Assume throughout this paper that Λ(z) is analytic at z = 0, and except in Sections 8.1, 8.3
and 8.4 assume that λ1 > 0, so that {0, 1} ⊆ Λ.

Definition 2 (Λ-Fishburn matrix). An upper-triangular matrix is called a Λ-Fishburn ma-
trix if every row and column has non-zero size, and all entries lie in the set Λ.

Definition 3 (Λ-row-Fishburn matrix). An upper-triangular matrix is called a Λ-row-
Fishburn matrix if all entries lie in the set Λ without zero row.

Proposition 1. The number of Λ-row-Fishburn matrices of size n is given by

[zn]
∑
k>0

∏
16j6k

(
Λ(z)j − 1

)
,(2.4)

and that of Λ-Fishburn matrices by

[zn]
∑
k>0

∏
16j6k

(
1− Λ(z)−j

)
= [zn]

∑
k>0

Λ(z)k+1
∏

16j6k

(
Λ(z)j − 1

)2
.(2.5)

Proof. The first generating function (2.4) follows from the definition of Λ-row-Fishburn ma-
trices. For a Λ-row-Fishburn matrix of dimension k, and for any j, 1 6 j 6 k, the generating
function of the (k−j+1)-st row counted by the size (variable z) is Λ(z)j−1. As a result, the
generating function for Λ-row-Fishburn matrices of dimension k is given by

∏
16j6k(Λ(z)j−1).

Summing over all k leads to (2.4).
On the other hand, the generating function for primitive Fishburn matrices is given by

(including the constant 1 for the empty matrix; see [31])∑
k>0

∏
16j6k

(
1− (1 + z)−j

)
.

Substituting 1 + z by Λ(z) yields the generating function for Λ-Fishburn matrices in the
general case.

The right-hand side of the identity (2.5) follows from the following q-identity due to
Andrews and Jeĺınek [4]∑

k>0

uk
∏

16j6k

(
1− 1

(1− s)(1− t)j−1

)
=
∑
k>0

(1− s)(1− t)k
∏

16j6k

((
1− (1− s)(1− t)j−1

)(
1− u(1− t)j

))
,

(2.6)

by substituting u = 1 and s = t = 1− Λ(z) on both sides. �
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2.3. Statistics on Fishburn matrices. The study of statistics on the Fishburn structures
traces back to the work by Andresen and Kjeldsen [1] in the context of transitively directed
graphs (see also [31]), where they studied the numbers of primitive Fishburn matrices counted
by the dimension and by the size of the first row (with the notation ξ(n, k) in [1]).

Stoimenow [41] found a recursive formula for the numbers of regular linearized chord
diagrams with a given length of the leftmost chord. Subsequently, it was discovered [6, 21,
31, 35, 36, 44] that these numbers are equivalent to the following ones:

• the sum of entries in the first row (or the last column) of Fishburn matrices of size
n;
• the number of minimal (or maximal) elements in (2 + 2)-free posets of size n;
• the maximal entries (or right-to-left minimal entries, or the number of zeros) in ascent

sequences of length n;
• the maximal entries in (2− 1)-avoiding inversion sequences of length n;
• the length of the initial run of openers in Stoimenow matchings of length [2n];
• the length of the initial decreasing run in (2|31̄)-avoiding permutations of length n;
• the number of left-to-right minima (or left-to-right maxima; or right-to-left maxima)

in (2|31̄)-avoiding permutations of length n.

These statistics are classified as Stirling statistics; see [21]. In parallel, the classical Euler-
ian statistics have also been intensively studied but the corresponding limiting distributions
were only recently solved in a subsequent paper [30].

2.4. Bivariate generating functions for Fishburn matrices with entry restrictions.
We study the asymptotic distributions of the following three random variables on random
Λ-Fishburn and Λ-row-Fishburn matrices, assuming a uniform distribution on the set of
all size-n matrices: the size of the first row, the size of the diagonal, and the number of
occurrences of 1.

The approach we use to characterize the corresponding limit laws relies heavily on the
corresponding bivariate generating functions and our double saddle-point analysis. We derive
the necessary generating functions in this subsection. We use the convention that f(z, v) is
the bivariate generating function for the quantity X if [znvm]f(z, v) denotes the number of
Λ-row-Fishburn matrices of size n with X = m.

Proposition 2 (Statistics on Λ-row-Fishburn matrices). We have the following bivariate
generating functions of Λ-row-Fishburn matrices with z marking the matrix size and v mark-
ing respectively:

(i) the size of the first row

(2.7) 1 +
∑
k>0

(
Λ(vz)k+1 − 1

) ∏
16j6k

(
Λ(z)j − 1

)
,

(ii) the size of the (main) diagonal (or the last column)

(2.8)
∑
k>0

∏
16j6k

(
Λ(vz)Λ(z)j−1 − 1

)
, and
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(iii) the number of 1s

(2.9)
∑
k>0

∏
16j6k

(
(Λ(z) + λ1(v − 1)z)j − 1

)
.

Proof. Given a Λ-row-Fishburn matrix of dimension k+1, the generating function for the first
row size (marked by vz) is Λ(vz)k+1−1, the remaining k rows contributing

∏
16j6k

(
Λ(z)j − 1

)
,

as in the proof of (2.4). The proofs for the other two parameters are similar and thus omit-
ted. �

For Λ-Fishburn matrices, the proof is less straightforward and we need a fine-tuned version
of Jeĺınek’s Theorem 2.1 in [31] in order to enumerate both the first row and the diagonal
sizes.

Let P denote the set of primitive Λ-Fishburn matrices. Define first

Gk(t, u, v, w, x, y)

:=
∑

(Mi,j)k×k∈P

tMk,ku
∑

26j<kMj,kv
∑

26j<kMj,jw
∑

1<i<j<kMi,jxM1,ky
∑

16j<kM1,j ,

so that t marks the lower-right corner (which is always 1), u the size of the last column
except the two ends, v the size of the (main) diagonal except the two ends, w the size of all
interior cells, x the upper-right corner, and y the size of the first row except the upper-right
corner.

Lemma 3. The generating function F (s, t, u, v, w, x, y) :=
∑

k>2Gk(t, u, v, w, x, y)sk of prim-
itive Λ-Fishburn matrices satisfies

F (s, t, u, v, w, x, y)

= t
∑
k>0

sk+2y(1 + x)(1 + y)k

(1 + u)(1 + v)(1 + w)k − 1

∏
06j6k

(1 + u)(1 + v)(1 + w)j − 1

1 + s
(
(1 + u)(1 + w)j − 1

) .(2.10)

Proof. (Sketch) By definition, it is clear thatG1 = x andGk(t, u, v, w, x, y) = tGk(1, u, v, w, x, y)
for k > 2. A recursive construction of Fishburn matrices was discovered by Haxell–McDonald–
Thomason [25] (also used in [31, Lemma 2.8]) where any Fishburn matrix of dimension k+1
is generated by conditioning on the entries in the last column of a Fishburn matrix of di-
mension k. Accordingly, we derive the recurrence relation

Gk+1(1, u, v, w, x, y)

= Gk(u+ v + uv, u, v + w + vw,w, x+ y + xy, y)− vGk(1, u, v, w, x, y)

= (u+ v + uv)Gk(1, u, v + w + vw,w, x+ y + xy, y)− vGk(1, u, v, w, x, y),

for k > 2. Then from this and the iterative arguments used in [31], we deduce (2.10); see
[31] for details. �

Proposition 4 (Statistics on Λ-Fishburn matrices). We have the following bivariate gen-
erating functions of Λ-Fishburn matrices with z marking the matrix size and v marking
respectively
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(i) the size of the first row (or the last column)∑
k>0

∏
16j6k

(
1− Λ(vz)−1Λ(z)1−j)

= Λ(vz)
∑
k>0

Λ(z)k
∏

16j6k

((
Λ(vz)Λ(z)j−1 − 1

)(
Λ(z)j − 1

))
,

(2.11)

(ii) the size of the (main) diagonal

1 + Λ(vz) + (Λ(vz)− 1)2
∑
k>0

∏
16j6k

(
Λ(vz)− Λ(z)−j

)
= Λ(vz)

∑
k>0

Λ(z)k
∏

16j6k

(
Λ(vz)Λ(z)j−1 − 1

)2
, and

(2.12)

(iii) the number of 1s∑
k>0

∏
16j6k

(
1− (Λ(z) + λ1(v − 1)z)−j

)
=
∑
k>0

(Λ(z) + λ1(v − 1)z)k+1
∏

16j6k

(
(Λ(z) + λ1(v − 1)z)j − 1

)2
.

(2.13)

Proof. (i) It is known that the generating function for the size of the first row (marked by
v) in primitive Fishburn matrices is given by (see [21, 34])∑

k>0

∏
16j6k

(1− (1 + vz)−1(1 + z)1−j).

Substituting 1 + vz by Λ(vz) and 1 + z by Λ(z) gives the left-hand side of (2.11),
which equals the right-hand side of (2.6) after substituting u = 1, s = 1 − Λ(vz) and
t = 1−Λ(z), i.e., the generating function on the right-hand side of (2.11). Alternatively,
one can derive (2.11) by using (2.10), Andrew-Jeĺınek identity (2.6), the identity [4,
Eq. (1)] and substitutions.

(ii) For the size of the diagonal, we have, again, by (2.10), the generating function

1 + vz + F (1, v2z, z, vz, z, z, z) = 1 + vz + (vz)2
∑
k>0

∏
16j6k

(
1 + vz − (1 + z)−j

)
.

The same substitutions 1 + vz 7→ Λ(vz) and 1 + z 7→ Λ(z) give the left-hand side of
(2.12). Applying now (2.6) with u = 1 + vz, s = 1− (1 + vz)(1 + z) and t = −z, and
then using the same substitutions, we obtain the right-hand side of (2.12).

(iii) The generating functions (2.13) for the number of 1s follow from substituting Λ(z) by
Λ(z) + λ1(v − 1)z in (2.5).

�

3. Asymptotics of the prototype sequence A158690

Consider the sequence an := [zn]A(z), where

A(z) :=
∑
k>0

Ak(z), with Ak(z) :=
∏

16j6k

(
ejz − 1

)
,(3.1)
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which is used as the running and prototypical example of our analytic approach. The se-
quence {n!an}n>0 equals A158690 and can be generated (in addition to (3.1)) by many
different forms (see [2, 8]), showing partly the diversity and structural richness of the se-
quence

A(z) =
∑
k>0

∏
16j6k

(
1− e−(2j−1)z

)
=
∑
k>0

e−(k+1)z
∏

16j6k

(
1− e−2jz

)
=
∑
k>0

e(2k+1)z
∏

16j62k

(
ejz − 1

)
=

1

2

(
1 +

∑
k>0

e(k+1)z
∏

16j6k

(
ejz − 1

))
.

Among these series forms, we work on (3.1) because it is simpler and Ak(z) contains only
positive Taylor coefficients.

Theorem 5. Define A(z) by (3.1). Then as n tends to infinity,

an := [zn]A(z) ' cρnnn+ 1
2 , with (c, ρ) :=

(
12
π3/2 ,

12
eπ2

)
.(3.2)

Our approach consists in computing the asymptotics of an,k := [zn]Ak(z) by the saddle-
point method (see [20]) for each 1 6 k < n, and then summing an,k over all k (in turn
involving another application of the saddle-point method); indeed, due to high concentration
near the maximum, only a small neighborhood of k near µn, µ := 12

π2 log 2 ≈ 0.84, will
contribute to the dominant asymptotics (3.2). Thus we are in the context of a double
saddle-point method.

More precisely, we begin with the expression

an =
∑

16k6n

an,k =
∑

16k6n

r−n

2πi

∫ π

−π
e−inθAk(re

iθ) dθ,

and follow the procedures outlined below.

• Find the positive pair (k, r) such that r is the saddle-point of Ak(z) and the value
r−nAk(r) reaches its maximum as n tends to infinity, so as to identify the terms an,k
that reach the maximum modulus for each fixed n; see Lemma 11.
• Once the range of k ∼ µn is identified, show, by a simple saddle-point bound for

Taylor coefficients, that the contribution to an of an,k from the range |k − µn| > n
5
8

is asymptotically negligible; see Proposition 12.
• In the central range |k−µn| 6 n

5
8 , the integral

∫
n−

3
86|θ|6π

is asymptotically negligible;

see Proposition 14.
• Then inside the ranges |k − µn| 6 n

5
8 and

∫
|θ|6n−

3
8
, compute the asymptotic approx-

imation (3.2) by local expansions and term-by-term integration; see Section 3.5.
• These procedures can be refined to get longer expansions if desired.

For all these purposes, it turns out that a precise asymptotic approximation to logAk(r)
will largely simplify the analysis. Since we will also need asymptotics of the derivatives of
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logAk(r), we propose a complex-variable version so as to avoid repeated use of the Euler-
Maclaurin formula.

3.1. Euler-Maclaurin formula and asymptotic expansions. We apply the Euler-Maclaurin
formula to approximate the various sums encountered in this paper, which for completeness
is included as follows.

Lemma 6 (Euler-Maclaurin formula). Assume that ϕ is m-times continuously differentiable
over the interval [a, b], m > 1. Then

b∑
j=a+1

ϕ(j) =

∫ b

a

ϕ(t) dt+
ϕ(b)− ϕ(a)

2
+

bm/2c∑
`=1

B2`

(2`)!

(
ϕ(2`−1)(b)− ϕ(2`−1)(a)

)
+

(−1)m+1

m!

∫ b

a

ϕ(m)(t)Bm({t})dt,

(3.3)

where {x} denotes the fractional part of x, the B`’s and the Bn(t)’s are Bernoulli numbers
and polynomials, respectively.

When ϕ is infinitely differentiable (which is the case for all functions considered in this
paper), we can push the expansion to any m > 0 depending on the required error, keeping
the error term under control.

The following expansion is crucial in our saddle-point analysis. Let

Lk(z) := logAk(z) =
∑

16j6k

log
(
ejz − 1

)
.

Proposition 7. For k →∞, we have

Lk(z) = k log
(
ekz − 1

)
− I(kz)

z
+

1

2
log

2π
(
ekz − 1

)
z

+
z
(
ekz + 1

)
24
(
ekz − 1

)
+
∑

26j<m

B2j

(2j)!
·
z2j−1e−kzE2j−2

(
e−kz

)(
1− e−kz

)2j−1 +O
(
k1−2m + |z|2m−1

)
,

(3.4)

uniformly for k|z| 6 2π − ε when | arg z| 6 π − ε, where

I(z) :=

∫ z

0

t

1− e−t
dt,

and En(x) =
∑

06j<n

〈
n
j

〉
xj denote the Eulerian polynomials.

Proof. For simplicity and for later use, we compute only the first few terms by working out
m = 2, as the general form follows from the relation

∂mz log
(
exz − 1

)
= (−1)m−1x

me−xzEm−1

(
e−xz

)(
1− e−xz

)m (m > 2);

see [42] for similar analysis.
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Since log
(
ejz − 1

)
is undefined at j = 0, we split the sum into two parts:

Lk(z) = log k!−
∑

16j6k

log
j

ejz − 1
.

By the Euler-Maclaurin formula (3.3), we find that∑
16j6k

log
j

ejz − 1
=

∫ k

0

log
x

exz − 1
dx+

1

2
log

kz

ekz − 1

+
1

12

(1

k
+
z

2
− z

1− e−kz
)

+O
(
k−2 + |z|2

)
.

Then an integration by parts gives∫ k

0

log
x

exz − 1
dx = k log

k

ekz − 1
− k +

I(kz)

z
.

The first few terms of (3.4) then follow from this and Stirling’s formula for log k!.
For the error term, by (3.3) with m = 2 and B2(x) = x2 − x+ 1

6
, we have

R2 :=

∫ k

0

( z2exz

(exz − 1)2
− 1

x2

)(
{x}2 − {x}+ 1

6

)
dx.

If k|z| 6 1, then R2 is bounded above by

R2 = O
(∫ 1/|z|

0

|z|2 dx
)

= O(|z|).

On the other hand, if 1 6 k|z| 6 2π − ε, then

R2 = O

(
|z|+

∫ k

1/|z|

(
|z|2e<(xz)

|exz − 1|2
+

1

x2

)
dx

)
= O

(
|z|+ k−1

)
,

as required, where <(z) denotes the real part of z. This proves (3.4). �

Note that

I(z) :=

∫ z

0

t

1− e−t
dt =

z2

2
+ dilog

(
e−z
)
,(3.5)

where dilog(1 − z) :=
∑

k>1
zk

k2
denotes the dilogarithm function. Also n![zn]dilog

(
e−z
)

=
Bn−1, the Bernoulli numbers.

The main reason of stating this complex-variable version for Lk(z) is that termwise dif-
ferentiation with respect to z is allowed by analyticity in a compact domain (or Cauchy’s
integral formula for derivatives), leading to an asymptotic expansion for all higher derivatives
of Lk(z); see, e.g., [38, 43]. In this way, we obtain, for example, the following approximations,
which will be needed below.

Corollary 8. Uniformly as k →∞ and k|z| 6 2π − ε when | arg(z)| 6 π − ε,

zL′k(z) =
∑

16j6k

jz

1− e−jz
=
I(kz)

z
+
kz − 1 + e−kz

2
(
1− e−kz

) +O
(
k−1 + |z|

)
.(3.6)
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Corollary 9. Let m > 2. Then

zmL
(m)
k (z) = (−1)m−1zm

∑
16j6k

jme−jzEm−1

(
e−jz

)(
1− e−jz

)m
= zm∂m−1

z

(
I(kz)

z2
+
kz − 1 + e−kz

2z
(
1− e−kz

) )+O
(
k−1 + |z|

)
,

(3.7)

uniformly as k →∞, k|z| 6 2π − ε when | arg z| 6 π − ε.

In particular, we see that each rmL
(m)
k (r) is asymptotically of linear order when kr = O(1).

3.2. Saddle-point method. I: Identifying the central range. A very simple uniform
estimate for an,k is readily obtained by the saddle-point bound for positive Taylor coefficients
(see [20, Sec. VIII.2]).

Lemma 10. For 1 6 k < n,

an,k 6 r−nAk(r),(3.8)

where r > 0 is chosen to be the saddle-point, namely, the unique positive solution of the
equation

rL′k(r) =
rA′k(r)

Ak(r)
=
∑

16j6k

jr

1− e−jr
= n.(3.9)

Such an r obviously exists for n > 1 and 1 6 k < n because x/(1 − e−x) > 1 is mono-
tonically increasing with x > 0. Also r → ∞ when k = o(n) and r → 0 when k → n. In
particular, r = 0 when k = n.

The simple bound (3.8) is sufficient to give not only the factorial term nn but also the
right exponential one

(
12
eπ2

)n
in (3.2), as the following lemma shows.

Lemma 11. For 1 6 k = qn < n,

an,k = O
(
nn+ 1

2 eφ(q,%)n
)
, with φ(q, %) := − log %+ q log(eq% − 1)− 1,(3.10)

subject to the condition I(q%) = %. The maximum value of φ(q, %) for q ∈ [0, 1] is reached
when

(q, %) = (µ, ξ) :=
(12

π2
log 2,

π2

12

)
, with eφ(µ,ξ) =

12

eπ2
.(3.11)

Proof. We begin with the first-order approximation to rL′k(r) already derived in (3.6) with
the saddle-point |z| = r = %

n
and k = qn,

%

n
L′k

(%
n

)
∼ n

%
I(q%),

which leads to the approximate saddle-point equation I(q%) = %. Furthermore, we have, by
(3.4),

log
(
r−nAk(r)

)
= n log n+ nφ(q, %) + 1

2
log n+O(1),

where φ(q, %) := − log %+ q log(eq% − 1)− 1, in view of I(q%) = %. We next look for the pair
of (q, %) such that the maximum value of φ(q, %) is reached.
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The only positive solution pair of the equations ∂qφ(q, %) = 0 and I(q%) = %, or, equiva-
lently,

log
(
eq% − 1

)
= 0 and I(q%) = %,

is given by (3.11), which is one of the sources of the ubiquitous factor π2

6
= ζ(2) in this

paper. It remains to prove φ(q, %) is maximal for q ∈ [0, 1] only when (3.11) occurs. Now,
by viewing w = w(q) as a function of q, we see that, when (q, w) satisfies the condition
I(qw) = w,

∂2
qφ(q, w) =

w

1− q2w − e−qw
.

We now prove that ∂2
qφ(q, w) < 0 for all pairs (q, w) such that I(qw) = w. First, the function

t 7→ t
1−e−t is motononically increasing for t > 0; then, with w 6= 0,

w =

∫ qw

0

t

1− e−t
dt <

qw

1− e−qw
· qw =

q2w2

1− e−qw
,

implying that

w
(

1− q2w

1− e−qw
)

=
w(1− q2w − e−qw)

1− e−qw
< 0.

Thus the function q 7→ ∂2
qφ(q, w) is always negative for all pairs (q, w) such that I(qw) = w,

showing that q 7→ φ(q, w) is concave downward when w satisfies I(qw) = w; see Figure 3.1.
This proves the lemma. �

Figure 3.1. The concavity of the function φ(q, %) when % = %(q) satisfies
I(q%) = % for q ∈ [0.2, 1] (left) and q ∈ [0.7, 0.95] (right).

3.3. Saddle-point method. II: Negligibility of summands outside the central
range. Define

σ := π−2
√

6
(
24(log 2)2 − π2

)
≈ 0.31988.(3.12)

Proposition 12. Write k = µn + xσ
√
n where µ and σ are given in (3.11) and (3.12),

respectively. Then uniformly for x = o
(
n

1
6

)
,

an,k = O
(
ρnnn+ 1

2 e−
1
2
x2
)
, with ρ := 12

eπ2 .(3.13)

In particular when k± := µn±
√

2σn
5
8 ,( ∑

16k<k−

+
∑

k+<k6n

)
an,k = O

(
ρnnn+ 3

2 e−n
1
4
)
.(3.14)
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Proof. Assume first

q := µ+
σx√
n
,(3.15)

where µ is defined in Lemma 11 but the value of σ given in (3.12) is (yet) unknown (and will
be specified by the following procedure). Substituting this q into the saddle-point equation
(3.9), as approximated by (3.6), and solving asymptotically for %, we then obtain

% = ξ +
ξ1x√
n

+
ξ2 + ξ3x

2

n
+O

( |x|+ |x|3
n

3
2

)
,(3.16)

where, with τ := 2(log 2)2 − π2

12

ξ1 := −π4 log 2
72 τ

, ξ2 := −π4(2 log 2−1)
288 τ

, and ξ3 := π6(288τ2+(log 2)π4+24π2τ−π4)
248832 τ3

.(3.17)

Then we substitute the expansions (3.15) and (3.16) into φ(q, %) (defined in Lemma 11),
giving

φ(q, %) = − log
π2

12
− 1 +

1

n

(1

2
− log 2− π4σ2x2

144τ

)
+O

( |x|+ |x|3
n

3
2

)
.

So if we take σ2 := 72π−4τ (which is identical to the expression (3.12)), then we see that

enφ(q,%) =

√
e

2

( 12

eπ2

)n
e−

1
2
x2
(

1 +O
( |x|+ |x|3√

n

))
,

uniformly for x = o
(
n

1
6

)
. This, together with (3.10) and Lemma 11, proves (3.13).

By monotonicity of φ(q, w) (see Lemma 11), the left-hand side of (3.14) is bounded from

above by (nan,k− + nan,k+). In consequence, (3.14) follows from (3.13) with x =
√

2n
1
8 . �

3.4. Saddle-point method. III: Negligibility of integrals away from zero. We now
show that in the remaining sum (k± defined in Proposition 12)∑

k−6k6k+

r−n

2π

∫ π

−π
e−inθAk(re

iθ) dθ,

the integral over the range θ0 6 |θ| 6 π, θ0 := 6n−
3
8 is asymptotically negligible. Such a θ0

is always chosen so that nθ2
0 → ∞ and nθ3

0 → 0; see [20]. We begin with a uniform bound
for |Ak(z)|.

Lemma 13. Let θ := arg(z). Then, uniformly for |z| > 0 and |θ| 6 π,

|Ak(z)| 6 Ak(|z|) exp

(
−k(k + 1)|z| θ2

2π2

)
, (k = 1, 2, . . . ).(3.18)

Proof. The uniform bound (3.18) is a direct consequence of the inequality (see [40, Appen-
dix]) ∣∣ez − 1

∣∣ 6 (e|z| − 1
)
e−|z|θ

2/π2

, (|θ| 6 π).(3.19)

This is proved as follows. First∣∣ez − 1
∣∣ =

∣∣e 1
2
z
∣∣∣∣e 1

2
z − e−

1
2
z
∣∣ 6 e

1
2
|z| cos θ

(
e

1
2
|z| − e−

1
2
|z|) =

(
e|z| − 1

)
e−

1
2
|z|(1−cos θ),
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where the inequality results from the fact that [tn]
(
et − e−t

)
> 0 for all n > 0. Then (3.19)

follows from the elementary inequality 1− cos θ > 2
π2 θ

2 for |θ| 6 π. �

Proposition 14. Define k± := µn±
√

2σn
5
8 as in Proposition 12 and θ0 := 6n−

3
8 . Then,∑

k−6k6k+

r−n

2π

∫
θ06|θ|6π

e−inθAk(re
iθ) dθ = O

(
ρnnn−

1
8 e−n

1
4
)
, with ρ :=

12

eπ2
.(3.20)

Proof. By (3.18) with z := reiθ,∑
k−6k6k+

r−n

2π

∫
θ06|θ|6π

e−inθAk(re
iθ) dθ = O

( ∑
k−6k6k+

r−nAk(r)

∫ ∞
θ0

e−
k2rθ2

2π2 dθ

)
.

Now, with k ∼ µn (k− 6 k 6 k+) and rn ∼ ξ (see (3.11)), we then have∫ ∞
θ0

e−
k2rθ2

2π2 dθ = O
( n 3

8

k2r
e
− k2r

2π2n3/4

)
= O

(
n−

5
8 e−

216(log 2)2

π4
(1+o(1))n

1
4
)
.

Note that 216(log 2)2

π4 ≈ 1.065 > 1. Then (3.20) follows from (3.13). �

3.5. Saddle-point method. IV: Proof of Theorem 5. From the two estimates (3.14)

and (3.20), we have, with ρ = 12
eπ2 and θ0 := 6n−

3
8 ,

an =
∑

k−6k6k+

r−nAk(r) ·
1

2π

∫ θ0

−θ0
e−inθ

Ak(re
iθ)

Ak(r)
dθ +O

(
ρnnn+ 3

2 e−n
1
4
)
.(3.21)

We begin by evaluating asymptotically the integral .

Lemma 15. If k = µn+ xσ
√
n, where µ and σ are given in (3.11) and (3.12), respectively,

then

JI :=
1

2π

∫ θ0

−θ0
e−inθ

Ak(re
iθ)

Ak(r)
dθ '

√
3

π3/2σ
n−

1
2 ,(3.22)

uniformly for x = o
(
n

1
6

)
.

Proof. Expand Lk(re
iθ) in θ:

log
Ak
(
reiθ
)

Ak(r)
= Lk

(
reiθ
)
− Lk(r) :=

∑
j>1

υj(r)

j!
(iθ)j.

First of all, υ1(r) =
rA′k(r)

Ak(r)
= rL′k(r) = n by our choice of r. Then by (3.7) with q := k

n
and

% := nr satisfying (3.15) and (3.16), we obtain

υ2(r) = r2L′′k(r) + rL′k(r) =
(24

π2
(log 2)2 − 1

)
n+O(1) =

π2

6
σ2n+O(1).
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Furthermore, each υj(r) � n by (3.7) when k− 6 k 6 k+. Thus υj(r)θ
j
0 → 0 for j = 3, 4, . . . ,

and we then obtain

JI =
1

2π

∫ θ0

−θ0
e−

1
2
υ2(r)θ2− 1

6
υ3(r)iθ3+O(nθ4) dθ

=
1

2π

∫ ∞
−∞

e−
1
2
υ2(r)θ2

(
1− 1

6
υ3(r)iθ3 +O(nθ4 + nθ6)

)
dθ +O

(
υ−1

2 n
3
8 e−18υ2(r)n−

3
4
)

=
1√

2πυ2(r)

(
1 +O

(
n−1
))

+O
(
n−

5
8 e−3π2σ2n

1
4
)
,

which proves (3.22). �

Proof of Theorem 5. With (3.21) and (3.22) available, we can now complete the proof of
Theorem5 by deriving the finer expansion

r−nAk(r) = c0ρ
nnn+ 1

2 e−
1
2
x2
(

1 +
g1(x)√
n

+O
(
n−1(1 + x6)

))
,

where (c0, ρ) :=
(√

24
π
, 12
eπ2

)
and g1(x) is an odd polynomial in x of degree three (whose

expression is immaterial here). It follows that

an,k := [zn]Ak(z) =

√
3

π3/2σ
n−

1
2 r−nAk(r)

(
1 +O

(
n−1
))

=
c1

σ
ρnnne−

1
2
x2
(

1 +
g1(x)√
n

+O
(
n−1(1 + x6)

))
,

(3.23)

uniformly for k− 6 k 6 k+, where (c1, ρ) :=
(√

72
π2 ,

12
eπ2

)
, where σ is given in (3.12).

From this and the two estimates (3.14) and (3.20), we obtain

an =
12

π3/2
ρnnn

∑
k−6k6k+

e−
1
2
x2

√
2π σ

(
1 +

g1(x)√
n

+O
(
n−1(1 + x6)

))
+O

(
ρnnn+ 3

2 e−n
1
4
)
,

from which we deduce (3.2) by approximating the sum by an integral. �

Remark 1. We have proved more than the asymptotic estimate (3.2); indeed, if we define
the random variable Xn by

P(Xn = k) :=
[zn]Ak(z)

[zn]A(z)
(1 6 k 6 n),

then our asymptotic expansions (3.23) and (3.2) imply obviously the local limit theorem (in
the form of moderate deviations):

P(Xn = µn+ xσ
√
n) =

e−
1
2
x2

√
2πσ2n

(
1 +O

( |x|+ |x|3√
n

))
,

uniformly for x = o
(
n

1
6

)
.
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4. Asymptotic expansions and change of variables

We examine briefly in this section two different ways to obtain asymptotic expansions
for an = [zn]A(z) as defined in (3.2), and then show how an argument based on change
of variables leads to expansions for the coefficients under different parametrization of the
underlying function.

The first approach to derive an expansion of the form

[zn]A(z) = cρnnn+ 1
2

(
1 +

∑
16j<m

νjn
−j +O

(
n−m

))
,(4.1)

for some computable coefficients νj, is now straightforward following the same analysis de-
tailed in the previous section. It consists in first computing an asymptotic expansion for
an,k:

an,k =
c1

σ
ρnnne−

1
2
x2
(

1 +
∑

16j<m

gj(x)

n
1
2
j

+O
(
n−

1
2
m
))
, with (c, ρ) :=

(
12
π3/2 ,

12
eπ2

)
,

which holds uniformly for k = µn+xσ
√
n, x = o(n

1
6 ), where gj(x) is a computable polynomial

in x of degree 3j and contains only powers of x with the same parity as j. From this we can
then deduce (4.1) by approximating the sum by an integral and extending the integration
range to ±∞. We omit the details as they are more or less standard and all procedures can
be readily coded in symbolic computation software.

4.1. An asymptotic expansion via Dirichlet series. For more methodological interest,
we sketch here another approach, based on that used in [8], to obtain asymptotic expansions
for an when more information is available.

Proposition 16. The sequence an in (3.2) satisfies the asymptotic expansion

an = cρn n!

(
1 +

∑
16j<m

cj
n(n− 1) · · · (n− j + 1)

+O
(
n−m

))
,(4.2)

for m > 2, where (c, ρ) :=
(

6
√

2
π2 ,

12
π2

)
and cj := 1

j!

(
− π2

288

)j
for j > 1.

In particular,

an = cρnn!

(
1− π2

288n
+

π4

165888n(n− 1)
+O

(
n−3
))
.

The very simple form of the coefficients cj naturally suggests the following approximation:

an = cρnn!e−
π2

288n

(
1 +O

(
n−3
))
,

which has obvious numerical advantages.

Proof. We begin with (1.7). As in [8], we define the Dirichlet series

D(s) :=
∑
n>1

n−s[qn−1]R
(
q24
)

= 1 + 25−s − 49−s + 2 · 73−s − 2 · 97−s + 121−s + · · · ,

which converges absolutely for <(s) > 1 and can be analytically continued into the whole s-
plane. Together with Mellin transform techniques (the correspondence between the singular
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expansion of a function at the origin and the residues of the Mellin transform; see [19,
Theorem 3] or [8, Lemma 2.4]), we now have the two relations (see [8])

an =
(−1)n

2
[zn]R

(
e−z
)
,

bn := [zn]e−
1
24
zR
(
e−z
)

=
(−1)nD(−n)

n!24n
.

Then the functional equation (1.6) (derived in [8, 10]) gives

D(−n) = c0ρ
n
0n!2

(
1 +O

(
23−n

))
, with (c0, ρ0) :=

(
12
√

2
π2 , 288

π2

)
,

for large n. This implies that

bn = c0(−1)nρnn!
(
1 +O

(
23−n

))
, with (c0, ρ) :=

(
12
√

2
π2 , 12

π2

)
.

From this, we have

bn−j
bn

=
(−ρ)−j

n(n− 1) · · · (n− j + 1)

(
1 +O

(
23−n

))
(j = 0, 1, . . . ),(4.3)

implying that the partial sum

an =
(−1)n

2
bn
∑

06j6n

bn−j
j!24jbn

is itself an asymptotic expansion. In this way, we obtain (4.2). �

4.2. From [zn]R(ez) to [zn]R(1+z) by a change of variables. We sketch here a different
technique to derive the asymptotic expansion (1.4) for [zn]

∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
from

(4.2) for an. The original proof by Zagier in [45] and by Bringmann–Li–Rhoades in [8] relies
on the asymtotics of the Stirling numbers of the first kind. We give a direct approach via
change of variables, which has the advantages of being easily codable and widely applicable
in more general contexts; see Sections 5 and 8.

Define R(q) by (1.5). Since

R(q) = 2
∑
k>0

∏
16j6k

(
qj − 1

)
is true to infinite order at every root of unity, that is, for any n > 1, the above identity holds
for any root of unity qn = 1. In particular, it includes the case q = 1 (see [10]). By the
change of variables 1 + z = ey, we have,

[zn]
∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
=

1

2
[zn]R(1 + z) = [yn]g(y)

(
e

1
24
yR
(
ey
))
,

where

g(y) :=
1

2

(
y

ey − 1

)n+1

e
23
24
y =

1

2
exp

(
−n

2
y +

11

24
y − (n+ 1)

∑
j>1

B2j

2j · (2j)!
y2j

)
,
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for small y. Since bn (see (4.3)) grows factorially with n, and the Taylor coefficients of g(y)
are small when compared to bn, we expand g at y = η, where η is small and to be determined
soon, and then carry out term by term extraction of the coefficients, yielding

[yn]g(y)
(
e

1
24
yR
(
ey
))

=
∑
j>0

g(j)(η)

j!
[yn](y − η)je

1
24
yR
(
ey
)

= g(η)b̄n + g′(η)
(
b̄n−1 − ηb̄n

)
+ · · · ,

where b̄n := (−1)nbn = [yn]e
1
24
yR
(
ey
)
. So if we take (see (4.3))

η :=
b̄n−1

b̄n
=

π2

12n

(
1 +O

(
23−n

))
,

then the terms involving g′(η) become zero, and we have

[yn]
(
e

1
24
yR
(
ey
))
g(y) = g(η)b̄n

(
1 +

g′′(η)

2g(η)

( b̄n−2

b̄n
−
b̄2
n−1

b̄2
n

)
+ · · ·

)
.

In general, by estimating the Taylor remainders, we deduce the expansion

[yn]
(
e

1
24
yR
(
ey
))
g(y) = g(η)b̄n

(
1 +

∑
26j62m

g(j)(η)

j!g(η)
Hj(n) +O

(
n−m−1

))
,

for m > 1, where the general terms are of order n−d
1
2
je because g(j)(η) = O(nj) and

Hj(n) :=
∑

06`6j

(
j

`

)(
− π2

12n

)j−`
b̄n−`
b̄n

=

(
π2

12

)j ∑
06`6j

(
j

`

)
(−1)j−`(n− `)!

nj−`n!

(
1 +O

(
23−n

))
,

which decays in the order n−j−d
1
2
je. In this way, we obtain

[zn]
∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
= cρn n!

(
1 +

∑
16j<m

cj
nj

+O
(
n−m

))
,(4.4)

where (c, ρ) :=
(

6
√

2
π2 e−

π2

24 , 12
π2

)
and

c1 :=
π2(π2 + 66)

1728
≈ 0.43333, c2 :=

π4(π4 − 12π2 − 3420)

5971968
≈ −0.05612,

c3 := −π
4(95π8 + 9360π6 − 232416π4 − 27051840π2 + 709171200)

1238347284480
≈ −0.03378.

5. A framework for matrices with 1s

We consider in this section generating functions of the form∑
k>0

d(z)k+ω0

∏
16j6k

(
e(z)j+ω − 1

)α
,(5.1)

for α ∈ Z+ and ω0, ω ∈ C, where d(z) and e(z) are functions analytic at z = 0 and satisfies
d(0) > 0, e(0) = 1 and e′(0) 6= 0. Then we discuss applications to row-Fishburn and Fishburn
matrices with entry restrictions and some OEIS sequences.
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Our approach consists in examining first the asymptotics of the simpler pattern

[zn]
∑
k>0

∏
16j6k

(
e(j+ω)z − 1

)α
,

for α ∈ Z+ and ω ∈ C, and follows closely the detailed analysis given in Section 3 for the
sequence A158690. Then the extension to (5.1) will rely on the change of variables argument
of Section 4.2.

Proposition 17. For any α ∈ Z+ and ω ∈ C,

[zn]
∑
k>0

∏
16j6k

(
e(j+ω)z − 1

)α ' cρnnn+αω+ 1
2
α,(5.2)

uniformly in ω, where the notation “'” is defined in (1.3) and

(c, ρ) :=

(√
6

απ

(
2
√

6√
απ Γ(1 + ω)

( 12

απ2

)ω)α
,

12

eαπ2

)
.

When ω ∈ Z−, the leading constant c is interpreted as zero because of Γ(1 + ω) in the
denominator, and the right-hand side of (5.2) becomes then a big-O estimate.

Proof. We sketch the major steps for obtaining the dominant term, as the error term follows
from the same procedure with more refined calculations.

• By the Euler-Maclaurin formula (3.3) (with I(z) defined in (3.5))∑
16j6k

log
(
e(j+ω)z − 1

)
= k log

(
ekz − 1

)
− I(kz)

z
+
(
ω +

1

2

)
log

ekz − 1

z

− log Γ(1 + ω) +
log 2π

2
+O

(
|ω|2

(
k−1 + |z|

))
,

(5.3)

(compare (3.4)) which holds uniformly as k → ∞ and k|z| 6 2π − ε in the sector
| arg z| 6 π − ε. Here (5.3) holds when ω 6= R−. But the asymptotic approximation,
by taking the exponential on both sides of (5.3),∏

16j6k

(
e(j+ω)z − 1

)
=

√
2π

Γ(1 + ω)

(ekz − 1

z

)ω+ 1
2 (
ekz − 1

)k
e−I(kz)/z

(
1 +O

(
|ω|2

(
k−1 + |z|

)))
does hold for bounded ω, provided we interpret the factor 1

Γ(1+ω)
as zero when ω ∈ Z−.

• The saddle-point equation satisfies asymptotically, by the same differentiation argu-
ment used for deriving (3.6),

α

r
I(kr) +

α

2
(2ω + 1)

( kr

1− e−kr
− 1
)

+O
(
k−1 + r

)
= n.

Since the dominant term is independent of ω, we deduce that k = qn with q ∼ µ
α

and

rn ∼ αξ, where (µ, ξ) :=
(

12
π2 log 2, π

2

12

)
is the same as in (3.11).
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• Observe that for large k 6 n∏
16j6k

∣∣e(j+ω)z − 1
∣∣ = O

(
k<(ω)

) ∏
16j6k

∣∣ejz − 1
∣∣,

when |z| � n−1 and ω = O(1). Then the smallness of the sum∑
|k− µ

α
n|>
√

2σn
5
8

[zn]
∏

16j6k

(
e(j+ω)z − 1

)α
,

as well as the corresponding sum of integrals
∑
|k− µ

α
n|6
√

2σn
5
8

∫
6n−

3
86|θ|6π

follows from

the same bounding techniques used in the proofs of Propositions 12 and 14.
• Inside the central range 1

α
k− 6 k 6 1

α
k+, where k± := µn±

√
2σn

5
8 , write, as before,

q := 1
α

(
µ+ σ x√

n

)
, and solve the saddle-point equation for r, giving

rn = αξ +
αξ1x√
n

+
α2ξ2(1 + 2ω) + αξ3x

2

n
+O

( |x|+ |x|3
n3/2

)
,(5.4)

where ξi are defined in (3.17).
• We then obtain

r−n
∏

16j6k

(
e(j+ω)r − 1

)α ∼ c0ρ
nnn+α( 1

2
+ω),

where

(c0, ρ) :=

((
2
√

6√
απ Γ(1 + ω)

( 12

απ2

)ω)α
,

12

eαπ2

)
.

• The remaining saddle-point analysis is similar to that of Theorem 5.

�

The uniformity in ω will be needed in Section 7. We now consider the framework (5.1).

Theorem 18. Assume α ∈ Z+ and ω0, ω ∈ C. For any two functions d(z) and e(z) that are
analytic at z = 0, satisfying d(0) = e(0) = 1 and e′(0) 6= 0, we have

[zn]
∑
k>0

d(z)k+ω0

∏
16j6k

(
e(z)j+ω − 1

)α ' cρnnn+α( 1
2

+ω),(5.5)

uniformly for bounded ω0 and ω, where dj := [zj]d(z), ej := [zj]e(z), and

(c, ρ) :=

(√
6

απ

(
2
√

6√
απ Γ(1 + ω)

( 12

απ2

)ω)α
2
d1
e1 e

απ2

12

(
e2
e21
− 1

2

)
,

12e1

eαπ2

)
.(5.6)

The situation when d(0) 6= 1 is readily modified. Also the error term can be further refined
if needed. The case when e′(0) = 0 but e′′(0) > 0 will be treated in Section 8 with particular
applications to self-dual Fishburn matrices.

We see that the exponential term depends on α and e1, the polynomial term on α and
ω, and the leading constant c on α, ω, d1, e1 and e2. Furthermore, as far as the dominant
asymptotics of the coefficients is concerned, the difference in (5.5) and (5.2) is reflected
exclusively via the first three terms d1, e1, e2 in the Taylor expansions of d(z) and e(z).
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Proof. By Cauchy’s integral formula

an :=
1

2πi

∮
|z|=r0

z−n−1
∑

16k6n
α

d(z)k+ω0

∏
16j6k

(
e(z)j+ω − 1

)α
dz,

where r0 > 0. Since e(z) = 1 + e1z + · · · with e1 6= 0, the function is locally invertible and
we can make the change of variables e(z) = ey, giving

an =
1

2πi

∮
|y|=r

ψ′(y)ψ(y)−n−1
∑

16k6n
α

d(ψ(y))k+ω0Ak(y) dy,

where Ak(y) :=
∏

16j6k

(
e(j+ω)y − 1

)α
and ψ(y) satisfies ψ(0) = 0 and e(ψ(y)) = ey. By the

analyticity of e(z) at the origin, ψ(y) is also analytic at y = 0. In particular,

ψ1 = [y]ψ(y) = 1
e1

and ψ2 = [y2]ψ(y) = 1
e1

(
1
2
− e2

e21

)
.(5.7)

By the analyticity of d and ψ at the origin, we have, for small |y|,

d(ψ(y))k+ω0 =
(
1 + d1ψ1y +

(
d1ψ2 + d2ψ

2
1

)
y2 + · · ·

)k
;

on the other hand, from our saddle-point analysis above, the integration path |y| = r is very
close to zero with r � n−1, and most contribution to an comes from terms with k of linear
order, so we see that d(ψ(y))k is bounded and close to ed1ψ1ky for large n. Similarly, by (5.7),

ψ′(y)ψ(y)−n−1 =
(
ψ1 + 2ψ2y +O

(
|y|2
)) (

ψ1y + ψ2y
2 +O

(
|y|3
))−n−1

= en1y
−n−1e

−ψ2
ψ1
ny (

1 +O
(
|y|+ n|y|2

))
.

Thus the same proof of Theorem 5 extends mutatis mutandis to this case, and we then obtain
the asymptotic approximation

an =
∑

k−
α
6k6

k+
α

1

2πi

∮
|y|=r

y−n−1Ak(y)e
−ψ2
ψ1
ny+d1ψ1ky

(
1 +O

(
|y|+ n|y|2

))
dy

+O
(
ρnnn+α(<(ω)+ 1

2
)e−n

1
4
)
,

where k± := µn ±
√

2σn
5
8 and r satisfies (5.4). Since q = k

n
satisfies q = 1

α

(
µ+ σ x√

n

)
, we

then deduce (5.5) by noting that

e
−ψ2
ψ1
nr+d1ψ1kr = e

−ψ2
ψ1
αξ+d1ψ1µξ

(
1 +

g̃1(x)√
n

+
g̃2(x)

n
+ · · ·

)
,

for some polynomials g̃1(x) and g̃1(x), where (µ, ξ) is given in (3.11). �

6. Applications I. Univariate asymptotics

We group in this section various examples (mostly from the OEIS) according to the pair
(α, ω). Some of them were already analyzed in the OEIS by Kotěšovec, but without proofs.

6.1. Λ-row-Fishburn matrices and examples with (α, ω) := (1, 0). We derive a general
asymptotic approximation to the number of Λ-row-Fishburn matrices and discuss some other
examples.
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6.1.1. Λ-row-Fishburn matrices. From Theorem 18, it is clear that no matter how widely we
choose the nonnegative integers as entries, the number of the resulting row-Fishburn matrices
of size n depends only on the numbers of 1s and 2s as far as the leading order asymptotics
is concerned, provided that the generating function satisfies (6.1) and is analytic at z = 0.

Corollary 19. Let Λ be a multiset of nonnegative integers with the generating function

Λ(z) := 1 +
∑
λ∈Λ

zλ = 1 + λ1z + λ2z
2 + · · · .(6.1)

If Λ(z) is analytic at z = 0 and Λ′(0) = λ1 > 0, then the number of Λ-row-Fishburn matrices
of size n satisfies

[zn]
∑
k>0

∏
16j6k

(
Λ(z)j − 1

)
' cρnnn+ 1

2 with (c, ρ) :=
(

12
π3/2 e

π2

12

(
λ2
λ21
− 1

2

)
, 12λ1
eπ2

)
.(6.2)

Proof. Apply Theorem 18 with (d(z), e(z)) := (1,Λ(z)). �

In particular, this corollary applies to the OEIS sequences in Table 3.

OEIS Λ Λ(z) (λ1, λ2) c ρ

A179525 {0, 1} 1 + z (1, 0) 12
π3/2 e

−π
2

24
12
eπ2

A289316 {0} ∪ {2k − 1 : k ∈ Z+} 1+z−z2
1−z2 (1, 0) 12

π3/2 e
−π

2

24
12
eπ2

A207433 {0, 1, 2} 1−z3
1−z (1, 1) 12

π3/2 e
π2

24
12
eπ2

A158691 Z>0
1

1−z (1, 1) 12
π3/2 e

π2

24
12
eπ2

A289313 {0, 1, 1, 2, 2, . . . } 1+z
1−z (2, 2) 12

π3/2
24
eπ2

Table 3. The large-n asymptotics (6.2) of some OEIS sequences that corre-
spond to the enumeration of Λ-row-Fishburn matrices with different Λ. Here
we split the pair (c, ρ) for clarity and group the sequences with the same pair
(λ1, λ2).

The last sequence of Table 3 can also be interpreted as the number of upper triangular
matrices with integer entries (positive and negative) whose sum of absolute entries is n, and
no row sums (in absolute entries) to zero.

6.1.2. Some OEIS sequences. Some other OEIS examples with (α, ω) := (1, 0) are compiled
in Table 4, where they all satisfy the asymptotic pattern

[zn]
∑
k>0

d(z)k
∏

16j6k

(
e(z)j − 1

)
' cρnnn+ 1

2 .(6.3)

Note that the Taylor expansions of e(z) in the two cases A207386 and A207397 of Table
4 both contain negative coefficients.
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OEIS d(z) e(z) (d1, e1, e2) (c, ρ)
A158690 1 ez (0, 1, 1

2
)

(
12
π3/2 ,

12
eπ2

)
A196194 z

ez−1
ez

(
−1

2
, 1, 1

2

) (
6
√

2
π3/2 ,

12
eπ2

)
A207214 ez ez (1, 1, 1

2
)

(
24
π3/2 ,

12
eπ2

)
A207386 1 1+z

1+z3
(0, 1, 0)

(
12
π3/2 e

−π
2

24 , 12
eπ2

)
A207397 1 1+z

1+z2
(0, 1,−1)

(
12
π3/2 e

−π
2

8 , 12
eπ2

)
A207556 1 + z 1 + z (1, 1, 0)

(
24
π3/2 e

−π
2

24 , 12
eπ2

)
Table 4. Some OEIS examples with (α, ω) := (1, 0); they all satisfy the asymp-
totic pattern (6.3) with (c, ρ) given in the last column. All ρ’s are the same
because e′(0) = e1 = 1.

6.1.3. Minor variants. Consider the following sequence (A207652) whose generating func-
tion does not have the same pattern (5.1); yet this sequence has the same leading order
asymptotics as A179525 (see Table 3):

[zn]
∑
k>0

∏
16j6k

(1 + z)j − 1

1− zj
' cρnnn+ 1

2 , with (c, ρ) :=
(

12
π3/2 e

−π
2

24 , 12
eπ2

)
.

This is because the extra product

(6.4)
∏

16j6k

1

1− zj
= 1 + z +O(|z|2)

is asymptotically unity plus a negligible error when z � n−1. Similarly, the sequence A207653
satisfies

[zn]
∑
k>0

∏
16j6k

1− (1− z)2j−1

1− z2j−1
' cρnnn+ 1

2 , with (c, ρ) :=
(

12
π3/2 e

π2

24 , 12
eπ2

)
,(6.5)

which has the same leading-order asymptotics as A158691.
Another example is A207434, which is defined by

bn := n[zn] log

(∑
k>0

∏
16j6k

(
(1 + z)j − 1

))
.

This is not of our format (5.1) but the leading asymptotics can be quickly linked to that
of A179525, the number an of primitive row-Fishburn matrices of size n; see (1.4). By the
relation

bn = nan −
∑

16j<n

bjan−j (n > 1),

and the factorial growth of the coefficients in (1.4), we then deduce that

bn ' nan ' cρnnn+ 3
2 , with (c, ρ) :=

(
12
π3/2 e

−π
2

24 , 12
eπ2

)
.
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6.1.4. Recursive variants. Consider first the sequence A186737 whose generating function is
defined recursively by

f(z) =
∑
k>0

∏
16j6k

(
(1 + zf(z))j − 1

)
= 1 + z + 3z2 + 14z3 + 82z4 + 563z5 + · · · .(6.6)

Let fm = [zm]f(z). Then by connecting (6.6) to row-Fishburn matrices, we find that fn
is the sum of weights on row-Fishburn matrices of size n, where each matrix is assigned a
weight equal to the product of fj−1 for each entry j > 0.

This is close to the framework (5.1). While Theorem 18 does not apply, the proof there
does. More precisely, we first define fn(z) :=

∑
06j6n anz

n, where an := [zn]f(z), so that

an = [zn]
∑

06k6n

∏
16j6k

(
(1 + zfn(z))j − 1

)
.

Before performing the change of variables ey = fn(z) for n > 1, we need to prove that |fn(z)|
remains bounded when |z| � n−1. We begin by the trivial bounds, using the positivity of
an:

an 6 r−n
∑

16k6n

∏
16j6k

(
(1 + rfn(r))j − 1

)
6 r−n

∑
16k6n

(1 + rfn(r))(
k+1
2 )

6 nr−n(1 + rfn(r))(
n+1
2 ).

Here r = rn > 0 is chosen to be the solution of the equation

n(
n+1

2

) =
2

n+ 1
= r ∂r log(1 + rfn(r)) = r

fn(r) + rf ′n(r)

1 + rfn(r)
.(6.7)

Now, by the monotonicity of an, we obtain

r
fn(r) + rf ′n(r)

1 + rfn(r)
∼


∑

16j6n+1 jaj−1r
j

1 +
∑

16j6n+1 aj−1rj
∼ n, if r →∞;

r +O(r2)

1 +O(r)
= r +O(r2), if r → 0.

Thus there exists a unique saddle-point r > 0 solving the equation (6.7). Since 2/(n+1)→ 0,
such r satisfies r → 0.

On the other hand, the inequality rf ′n(r) > fn(r)− 1 leads to

2

n+ 1
= r

fn(r) + rf ′n(r)

1 + rfn(r)
>

2rfn(r)− r
1 + rfn(r)

,

which in turn implies that

fn(r) 6
1

rn
+

1

2
+

1

2n
.

Thus fn(r) = O(1) when r � n−1. Now, a direct bootstrapping argument based on (6.7)
gives the finer expansion

r =
2

n
− 6

n2
− 30

n3
+ · · · ,
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and then

fn(r) = 1 +
2

n
+

6

n2
+ · · · .

Consequently,

an 6 nr−n(1 + rfn(r))(
n+1
2 ) = O

(
nn+1ρn

)
, with ρ :=

e

2
.

Since |fn(z)| 6 fn(|z|) = O(1) when z � n−1, the change of variables 1 + zfn(z) = ey is not
only locally invertible but also leads to the boundedness of the positive solution z = z(y)
solving 1 + zfn(z) = ey when y = O

(
n−1
)
. As a result, the local expansion of the solution

is given by

z = y − 1
2
y2 − 11

6
y3 − 145

24
y4 + · · · .

The remaining analysis then follows the same procedure as the proof of Theorem 18, yielding

[zn]
∑
k>0

∏
16j6k

((1 + zf(z))j − 1) ' cρnnn+ 1
2 , with (c, ρ) :=

(
12
π3/2 e

π2

24 , 12
eπ2

)
,

which is consistent with the expression derived by Kotěšovec on the OEIS page.
Similarly, the sequence A224885 defined as the coefficients of the generating function

f(z) = 1 + z +
∑
k>2

∏
16j6k

(
f(z)j − 1

)
= 1 + z + 2z2 + 15z3 + 143z4 + 1552z5 + · · ·

satisfies

[zn]f(z) ' cρnnn+ 1
2 , with (c, ρ) =

(
12
π3/2 e

π2

8 , 12
eπ2

)
.

In analogy to (6.6), here fn = [zn]f(z) is the sum of weights on row-Fishburn matrices of size
n, where the only row-Fishburn matrix of dimension one is primitive and each row-Fishburn
matrix is assigned a weight equal to the product of fj for each entry j > 0.

6.2. Λ-Fishburn matrices and examples with (α, ω) := (2, 0). We now consider the
case when (α, ω) := (2, 0), beginning with the asymptotics of Λ-Fishburn matrices.

6.2.1. Λ-Fishburn matrices.

Corollary 20. Let Λ be a multiset of nonnegative integers with the generating function Λ(z)
defined as in (6.1). If Λ(z) is analytic at z = 0 and λ1 > 0, then the number of Fishburn
matrices of size n satisfies

[zn]
∑
k>0

∏
16j6k

(
1− Λ(z)−j

)
' cρnnn+1 with (c, ρ) :=

(
12
√

6
π2 e

π2

6

(
λ2
λ21
− 1

2

)
, 6λ1
eπ2

)
.

Proof. Use (2.5) and then apply Theorem 18 with d(z) = e(z) = Λ(z) and α = 2. �

A few OEIS examples to which this corollary applies are collected in Table 5.
In particular, we see from Table 5 that Zagier’s result (1.1) for the asymptotics of Fishburn

numbers corresponds to A022493. Also the result for A138265 improves the crude bound
given in [33]; see also [7].
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OEIS Λ Λ(z) (λ1, λ2) (c, ρ)

A022493 Z>0
1

1−z (1, 1)
(

12
√

6
π2 e

π2

12 , 6
eπ2

)
A138265 {0, 1} 1 + z (1, 0)

(
12
√

6
π2 e−

π2

12 , 6
eπ2

)
A289317 {0} ∪ {2k − 1 : k ∈ Z+} 1+z−z2

1−z2 (1, 0)
(

12
√

6
π2 e−

π2

12 , 6
eπ2

)
A289312 {0} ∪ 2Z+ 1+z

1−z (2, 2)
(

12
√

6
π2 , 12

eπ2

)
Table 5. The large-n asymptotics (of the form cρnnn+1) of some OEIS se-
quences that correspond to the enumeration of Λ-Fishburn matrices with dif-
ferent Λ.

Corollary 20 also implies the asymptotics of r-Fishburn numbers [22]:

[zn]
∑
k>0

∏
16j6k

(
1− (1− z)rj

)
' cρnnn+1 with (c, ρ) :=

(
12
√

6
π2 e

π2

12r , 6r
eπ2

)
,

and applies to the sequence studied in [13] with Λ(z) = 1 + z + · · ·+ zm−1, m > 3.

6.2.2. Other OEIS examples. We discuss three other OEIS sequences with (α, ω) = (2, 0).
Consider first A079144, which enumerates labelled interval orders on n points [7] with d(z) =
e(z) = ez, and we obtain

[zn]
∑
k>0

∏
16j6k

(
1− e−jz

)
= [zn]

∑
k>0

e(k+1)z
∏

16j6k

(
ejz − 1

)2

' cρnnn+1, with (c, ρ) :=
(

12
√

6
π2 , 6

eπ2

)
.

Alternatively, (1.2) provides a different proof for this asymptotic estimate and a finer expan-
sion; see [45].

Consider now A207651, the generating function of this sequence is different from A022493,
the Fishburn numbers, but they satisfy the same asymptotic relation (see (1.1))

[zn]
∑
k>0

∏
16j6k

1− (1− z)j

1− zj
' cρnnn+1, with (c, ρ) :=

(
12
√

6
π2 e

π2

12 , 6
eπ2

)
,

since the additional product is again asymptotically 1 plus a negligible error; see (6.4).
The last sequence is A035378:

[zn]
∑
k>1

∏
16j6k

(
1− (z − 1)j

)
= [zn]

∑
k>0

(z − 1)−k−1
∏

16j6k

(
1− (z − 1)−j

)2
.

Theorem 18 does not apply directly but our approach does by rewriting the GF as (by
grouping the terms in pairs)∑

k>0

1

(1− z)2k+1

(
1

1− z

(
1 +

1

(1− z)2k+1

)2

− 1

) ∏
16j62k

(
1

(1− z)j
− 1

)2

;

we then derive the approximation

[zn]
∑
k>1

∏
16j6k

(
1− (z − 1)j

)
' cρnnn+1, with (c, ρ) :=

(
48
√

3
π2 e

π2

48 , 24
eπ2

)
,
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consistent with that provided on the OEIS webpage of A035378 by Kotěšovec; see also [45,
Sec. 5].

6.3. Examples with ω 6= 0. We gather some examples in the following table, where we use
the form

an := [zn]
∑
k>0

dk(z)
∏

16j6k

(
ej(z)− 1

)
,

with (dk(z), ej(z)) given in the second column.

OEIS (dk(z), ej(z)) an ' (c, ρ)

A215066 (1, e(2j−1)z) cρnnn
(

2
√

3
π
, 24
eπ2

)
A209832 (e(k+1)z, e(2j−1)z) cρnnn

(
2
√

6
π
, 24
eπ2

)
A214687

(
e2kz, e(2j−1)z

)
cρnnn

(
4
√

3
π
, 24
eπ2

)
A207569

(
1, (1 + z)2j−1

)
cρnnn

(
2
√

3
π
e−

π2

48 , 24
eπ2

)
A207570

(
1, (1 + z)3j−2

)
cρnnn−

1
6

(
Γ( 2

3
)35/6

21/3π7/6 e
−π

2

72 , 36
eπ2

)
A207571

(
1, (1 + z)3j−1

)
cρnnn+ 1

6

(
122/3

π5/6Γ( 2
3

)
e−

π2

72 , 36
eπ2

)
In general,

[zn]
∑
k>0

∏
16j6k

(
(1 + z)pj−s − 1

)
' cρnnn+ 1

2
− s
p ,

for 0 < s < p (not necessarily integers), where

(c, ρ) :=

( √
π

Γ
(
1− s

p

) (π2

12

) s
p
−1

e−
π2

24p ,
12p

eπ2

)
.

A minor variant of A207569 with the same asymptotic approximation is the sequence
A207654:

[zn]
∑
k>0

∏
16j6k

(1 + z)2j−1 − 1

1− z2j−1
' cρnnn, with (c, ρ) =

(
2
√

3
π
e−

π2

48 , 24
eπ2

)
;

see also (6.5).
The last example is A207557: [zn]f(z) with

f(z) :=
∑
k>0

(1 + z)−k(k−1)
∏

16j6k

(
(1 + z)2j−1 − 1

)
,

which can be transformed, by the Rogers-Fine identity (see [15]) into

f(z) = 1 + z−1
∑
k>1

(1 + z)2k+1
∏

16j6k

(
(1 + z)2j−1 − 1

)2
.

We can then apply Theorem 18, and obtain

[zn]f(z) = [zn+1]
∑
k>1

(1 + z)2k+1
∏

16j6k

(
(1 + z)2j−1 − 1

)2

' c0ρ
n+1(n+ 1)n+1 ' c0eρρ

nnn+1, with (c0, ρ) :=
(

2
√

6
π
e−

π2

24 , 12
eπ2

)
.
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Thus c0eρ = 24
√

6
π3 e−

π2

24 , consistent with the expression derived by Kotěšovec in the OEIS; see
[37, A207557].

7. Applications II. Bivariate asymptotics (asymptotic distributions)

We derive in this section the various limit laws arising from the sizes of the first row and
the diagonal, as well as the number of 1s in random Fishburn and row-Fishburn matrices,
assuming that all matrices of the same size are equally likely to be selected. We begin with
row-Fishburn matrices because they are technically simpler.

7.1. Statistics on Λ-row-Fishburn matrices. By Proposition 1, the number of Λ-row-
Fishburn matrices of size n is given by (see (2.4))

an := [zn]
∑
k>0

∏
16j6k

(
Λ(z)j − 1

)
,

where Λ(z) is the generating function of the multiset Λ; see (2.3). The asymptotics of an is
already examined in Corollary 19.

Recall that the probability generating function of a Poisson distribution with mean τ > 0
is given by eτ(v−1), while that of a zero-truncated Poisson (ZTP) distribution with parameter
τ by

eτv − 1

eτ − 1

whose mean and variance equal

τeτ

eτ − 1
and

τeτ (eτ − 1− τ)

(eτ − 1)2
,

respectively. When τ := log 2, these become 2 log 2 and 2(log 2)(1 − log 2), respectively.

Also N (0, 1) denotes the standard normal distribution. The notation Xn
d→ X means

convergence in distribution.

7.1.1. Limit theorems.

Theorem 21 (Statistics on Λ-row-Fishburn matrices). Assume that Λ(z) is analytic at z = 0
with λ1 > 0. Then in a random matrix (under the uniform distribution assumption on the
set of Λ-row-Fishburn matrices of the size n),

(i) the size Xn of the first row is distributed asymptotically as zero-truncated Poisson with
parameter log 2:

Xn
d→ ZTP(log 2),

(ii) the size Yn of the diagonal (or the last column) is asymptotically normally distributed
with mean and variance both asymptotic to log n,

(7.1)
Yn − log n√

log n

d→ N (0, 1), and
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(iii) for the number Zn of 1s, if λ2 > 0, then

n− Zn
2

d→ Poisson(τ) with τ :=
λ2π

2

12λ2
1

,(7.2)

and P(Zn = n)→ 1 if λ2 = 0.

For the diagonal size, we can also express the asymptotic distribution as Yn ∼ Poisson(log n),
which implies (7.1). Finer approximations are given in (7.4) and (7.5).

Proof. (i) For the first row size Xn, we begin with the generating function (see (2.7))

fX(z, v) :=
∑
k>0

(
Λ(vz)k+1 − 1

) ∏
16j6k

(
Λ(z)j − 1

)
.

By applying (5.5) to (d(z), e(z)) := (Λ(vz),Λ(z)) and to (d(z), e(z)) := (1,Λ(z)), we
deduce that

E
(
vXn
)

:=
[zn]fX(z, v)

an
' 2v − 1,

holding uniformly for bounded v = O(1). This asymptotic estimate holds a priori
pointwise for each finite v 6= 0, but the same proof gives indeed the uniformity of the
error term in v when v = O(1) and v stays away from zero. To include v = 0, we
observe that E

(
vXn
)

is a polynomial without constant term (or equal to zero when
v = 0) when n > 1; since the right-hand side also equals zero when v = 0, we conclude
by analyticity the uniform bound in the region v = O(1). This implies the convergence
in distribution to the zero-truncated Poisson (ZTP) law with parameter log 2.

(ii) Consider now the generating polynomial for the diagonal size Yn

[zn]fY (z, v) := [zn]
∑
k>1

∏
16j6k

(
Λ(vz)Λ(z)j−1 − 1

)
.

The generating function is not of the form (5.1), but observe that

Λ(vz) = Λ(z)v
(
1 +O(|z|2)

)
,

when |z| is small. Then, when k � n and |z| � n−1 (taking logarithm and estimating
the sum of errors), we have∏

16j6k

(
Λ(vz)Λ(z)j−1 − 1

)
=

( ∏
16j6k

(
Λ(z)j+v−1 − 1

))(
1 +O

(
|z| log k

))
,(7.3)

and we are in a position to apply Theorem 18, giving

[zn]fY (z, v) = c(v)ρnnn+v− 1
2

(
1 +O

(
n−1 log n

))
,

where

(c(v), ρ) :=

( √
π

Γ(v)

(12λ1

π2

)v
e
π2

12

(
λ2
λ21
− 1

2

)
,
12λ1

eπ2

)
,
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uniformly for bounded v = O(1); note that [zn]fY (z, v) is again a polynomial without
constant term, so the estimate also holds when v = 0 because c(v) → 0 as v → 0.
Accordingly, the probability generating function of Yn satisfies

E
(
vYn
)

=
[zn]f(z, v)

an
=

1

Γ(v)

(
12

π2

)v−1

e(v−1) logn
(
1 +O

(
n−1 log n

))
,

uniformly for bounded v = O(1). This is of the form of Quasi-Powers (see [20, 27]),
and we then deduce the asymptotic normality of Yn with optimal convergence rate:

sup
x∈R

∣∣∣∣P(Yn − log n√
log n

6 x
)
− Φ(x)

∣∣∣∣ = O
(
(log n)−

1
2

)
,(7.4)

together with the asymptotic approximations to the mean and the variance:

E(Yn) = log n+ γ + log 12
π2 +O

(
n−1 log n

)
,

V(Yn) = log n+ γ − π2

6
+ log 12

π2 +O
(
n−1(log n)2

)
,

(7.5)

where γ denotes the Euler-Mascheroni constant and Φ(x) denotes the distribution func-
tion of the standard normal distribution. For other types of Poisson approximation,
see [29].

(iii) Applying the same proof of Theorem 18 to the generating function (2.9) for the number
of 1s gives

[zn]
∑
k>1

∏
16j6k

(
(Λ(z) + λ1(v − 1)z)j − 1

)
' c(v)vnρnnn+ 1

2 ,

uniformly for bounded v, where (c(v), ρ) :=
(

12
π3/2 e

π2

12

(
λ2
λ21v

2−
1
2

)
, 12λ1v
eπ2

)
. This implies that

if λ2 > 0, then

(7.6) E
(
v

1
2

(n−Zn)
)
' eτ(v−1), with τ :=

π2λ2

12λ2
1

,

and we then obtain the limit Poisson distribution with parameter τ . If λ2 = 0, then
E
(
vn−Zn

)
tends to 1, a Dirac distribution. Furthermore, by the uniformity of (7.6) and

Cauchy’s integral representation, we obtain (7.2); see [27].

Similarly, for the number Z
[2]
n of 2s, we use the generating function∑

k>1

∏
16j6k

((
Λ(z) + λ2(v − 1)z2

)j − 1
)
,

and deduce that E
(
vZ

[2]
n
)
' eτ(v−1), with the same τ as in (7.2).

�

Stronger results such as local limit theorems can also be derived; see [27] for more infor-
mation.
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7.1.2. Applications. Consider first the case of primitive row-Fishburn matrices with Λ =
{0, 1}. Then by Theorem 21, we see that in a random primitive Fishburn matrix the first
row size is asymptotically ZTP(log 2) distributed, the diagonal is asymptotically normal,
while the number of 1 is obviously the same as the size of the matrix. In particular, the
distribution of the diagonal size corresponds to sequence A182319.

On the other hand, when Λ(z) := 1
1−z , we have very similar behaviors for the sizes of the

first row and the diagonal, but the number Zn of 1s is asymptotically Poisson:

P(n− Zn = 2k)→ τk

k!
e−τ , with τ = π2

12
for k = 0, 1, . . . .

Figure 7.1. The histograms of Xn, Yn and Zn in the case of row-Fishburn
matrices (Λ(z) = 1

1−z ) for n = 6, . . . , 50 (see Theorem 21): P(Xn = k) (left),
P(Yn = btµnc) (middle), and P(n−Zn = 2k) (right), where µn = E(Yn). Their
convergence to ZTP, normal and Poisson is visible in each case, as well as the
corresponding convergence rate.

7.2. Statistics on Fishburn matrices. We consider random Λ-Fishburn matrices in this
subsection. By Proposition 1, the number of Λ-Fishburn matrices of size n is given by (see
(2.5))

an := [zn]
∑
k>0

∏
16j6k

(
1− Λ(z)−j

)
,

and an asymptotic approximation is already derived in Corollary 20.

7.2.1. Limit theorems.

Theorem 22. Assume that Λ(z) is analytic at z = 0 with λ1 > 0 and that all Λ-Fishburn
matrices of size n are equally likely to be selected. Then in a random matrix, the size Xn of
the first row (or the last column) and the diagonal size Yn are both asymptotically normally
distributed with logarithmic mean and variance in the following sense

(7.7)
Xn − log n√

log n

d→ N (0, 1), and
Yn − 2 log n√

2 log n

d→ N (0, 1),

and if λ2 > 0, then the number Zn of 1s is asymptotically Poisson distributed

n− Zn
2

d→ Poisson(τ) with τ :=
λ2π

2

6λ2
1

,(7.8)

otherwise, λ2 = 0 implies that P(Zn = n)→ 1.
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Proof. (i) We begin with the generating function (see (2.11)) for the first row size

fX(z, v) := Λ(vz)
∑
k>0

Λ(z)k
∏

16j6k

((
Λ(vz)Λ(z)j−1 − 1

)(
Λ(z)j − 1

))
.

By (7.3) and the expansion Λ(vz) = 1 +O(|z|) for small |z|, we have

fX(z, v) =

(∑
k>0

Λ(z)k
∏

16j6k

((
Λ(z)j+v−1 − 1

)(
Λ(z)j − 1

)))(
1 +O(|z| log n)

)
,

when |z| � n−1.
Similar to Theorem 18, we first derive, by the same methods used in the proof of

Proposition 17, that

[zn]
∑
k>0

ekz
∏

16j6k

(
e(j+ω)z − 1

)(
ejz − 1

)
' c0(ω)ρnnn+ω+1,(7.9)

where

(c0(ω), ρ) :=

(
2
√

6

Γ(1 + ω)

( 6

π2

)1+ω

,
6

eπ2

)
.

Briefly, α is almost 2 in the proof of Proposition 17, and the largest terms occur when
k ∼ µn and n|z| ∼ ξ with (µ, ξ) as in (3.11), so that ekz contributes an extra factor 2.

We now make the change of variables Λ(z) = ey, and follow the same proof procedure
of Theorem 18, yielding

[zn]
∑
k>0

Λ(z)k
∏

16j6k

((
Λ(z)j+v−1 − 1

)(
Λ(z)j − 1

))
' c(v)ρnnn+v,

where

(c(v), ρ) :=

(
2
√

6

Γ(v)

( 6

π2

)v
e
π2

12

(
λ2
λ21
− 1

2

)
,
6λ1

eπ2

)
.

We then deduce that

E
(
vXn
)

=
1

Γ(v)

( 6

π2

)v−1

nv−1
(
1 +O

(
n−1 log n

))
,

uniformly for v = O(1), and the asymptotic normality of Xn then follows again from the
Quasi-Powers theorem [20, 27] or a standard characteristic function argument. Finer
results such as (7.4) and (7.5) can also be derived.

(ii) For the size of the diagonal Yn, we now have the generating function (see (2.12))

fY (z, v) := Λ(vz)
∑
k>0

Λ(z)k
∏

16j6k

(
Λ(vz)Λ(z)j−1 − 1

)2
.

By (7.3), the same arguments used in (i) for Xn and Theorem 18, we deduce that

[zn]fY (z, v) = c(v)ρnnn+2v−1
(
1 +O

(
n−1 log n

))
,

where

(c(v), ρ) :=

(
2
√

6

Γ(v)2

( 6

π2

)2v−1

e
π2

12

(
λ2
λ21
− 1

2

)
,
6λ1

eπ2

)
.
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It follows that

E
(
vYn
)

=
1

Γ(v)2

( 6

π2

)2(v−1)

n2(v−1)
(
1 +O

(
n−1 log n

))
,

uniformly for v = O(1). The asymptotic normality then follows from Quasi-Powers
Theorem.

(iii) Since λ1 > 0, we can apply Theorem 18 to the generating function (2.13) for the number
Zn of 1s, which is

fZ(z, v) :=
∑
k>0

(Λ(z) + λ1(v − 1)z)k+1
∏

16j6k

(
(Λ(z) + λ1(v − 1)z)j − 1

)2
,

and we deduce that E
(
v

1
2

(n−Zn)
)
' eτ(v−1), where τ := π2λ2

6λ21
, which leads to a degenerate

limit law when λ2 = 0 and a Poisson limit law otherwise. The number of 2s follows the
same law.

�

The most widely studied parameter is the size Xn of the first row of uniformly random
Fishburn matrices, i.e., the case Λ(z) = (1 − z)−1. It appeared in Stoimenow’s study [41]
on chord diagrams, and later examined by Zagier in [45]. Then the limiting distribution of
Xn was raised as an open question in [8, 31]. The generating function fX(z, v) for the first
row size has been derived in several papers; see, for example, [4, 6, 21, 31, 44], A175579 and
Section 2 for several other quantities with the same distribution as Xn. See also Table 6 and
Figure 7.2 for the distribution of small n and graphical renderings.

n\k 1 2 3 4 5 6 7
1 1
2 1 1
3 2 2 1
4 5 6 3 1
5 15 21 12 4 1
6 53 84 54 20 5 1
7 217 380 270 110 30 6 1

n\k 1 2 3 4 5 6 7
1 1
2 0 2
3 0 1 4
4 0 2 5 8
5 0 5 14 18 16
6 0 15 47 67 56 32
7 0 53 183 287 267 160 64

Table 6. The number of Fishburn matrices of size n with first row size equal
to k (left) and the diagonal size to k (right) for n = 1, . . . , 7. The table on the
left corresponds to A175579.

The mean and the variance of Xn satisfy

E(Xn) = log n+ γ − log π2

6
+O

(
n−1 log n

)
,

V(Xn) = log n+ γ − π2

6
− log π2

6
+O

(
n−1(log n)2

)
.

8. A framework for matrices without 1s and self-dual matrices

We discuss in this section the extension to the situation when e1 = 0 and e2 > 0 of the
general framework (5.1). The general asymptotic expressions (5.5) and (5.6) certainly fail in
such a case as the leading constant involves e1 in the denominator.
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Figure 7.2. The histograms of Xn and Yn (Fishburn matrices) for n =
6, . . . , 100 (see Theorem 22): σn(X)P(Xn = btµn(X)c) (first), P(Xn =
btµn(X)c) (second), σn(Y )P(Yn = btµn(Y )c) (third), P(Yn = btµn(Y )c)
(fourth), where µn(W ) and σ2

n(W ) denote the corresponding mean and vari-
ance of Wn, respectively.

In addition to providing a better understanding of Fishburn matrices in more general sit-
uations, our consideration of (5.1) with e1 = 0 and e2 > 0 was also motivated by asymptotic
enumeration of the self-dual Fishburn matrices, a conjecture raised by Jeĺınek (Conjecture
5.4 of [31]). In particular, the asymptotic approximations of non-primitive and primitive
self-dual Fishburn matrices (given in (8.5) and (8.4)) will follow readily from our general
result Theorem 23 or Corollary 26. Furthermore, as in Sections 6 and 7, our framework will
be equally useful in characterizing the asymptotic distributions of a few statistics in random
self-dual Fishburn matrices, which we briefly explore in this section.

While most proofs in this section follow similar ideas to the ones we employed in Section 3–
7, the technical details in these proofs are more involved with generally lengthier expressions.
Thus we will indicate the major differences.

8.1. Asymptotics of (5.1) with e1 = 0 and e2 > 0.

Theorem 23. Assume α ∈ Z+ and ω0, ω ∈ C. Given any two functions e(z) := 1+
∑

j>1 ejz
j

and d(z) := 1 +
∑

j>1 djz
j that are analytic at z = 0, satisfying e1 = 0, e2 > 0, and

αe3π
2 + 12d1e2 log 2 > 0,(8.1)

we have

(8.2) [zn]
∑
k>0

d(z)k+ω0

∏
16j6k

(
e(z)j+ω − 1

)α
= ceβ

√
nρ

1
2
nn

1
2

(n+α)+αω
(
1 +O

(
n−

1
2

))
,

the O-term holding uniformly for bounded ω0 and ω, where β :=
√

6d1 log 2√
e2απ

+
√
α e3π

2
√

6 e
3/2
2

, ρ := 6e2
eπ2α

,

and

c :=
√

3√
2απ

(
1

Γ(1+ω)

√
12
απ

(
6
απ2

)ω)α
2
− d21

2e2
− 3d1e3

4e22
+
d2
e2 e
− d21

4αe2
−απ

2

12

(
7e23
8e32
− e4
e22

+ 1
2

)
+

3d21
2e2απ

2 (log 2)2

.

Note specially the change of the dominant exponential part ρ
1
2
nn

1
2

(n+α)+αω in (8.2), as well
as the presence of the extra factor eβ

√
n when compared to (1.1) and (1.4). On the other

hand, β > 0 is equivalent to the condition (8.1). When β = 0 (and e2 > 0), asymptotic
periodicities emerge (depending on the parity of n), which complicate the corresponding
expressions. Instead of formulating a general heavy result, we will content ourselves with
the study of Fishburn matrices with λ2i−1 = 0 for 1 6 i 6 m, but λ2, λ2m+1 > 0 in Section 8.4.
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The proof of Theorem 23 is similar to that of Theorem 5 and Theorem 18, beginning
first with the corresponding exponential version and following by the change of variables
e(z) = ey

2
(locally invertible).

Proposition 24. For large n, α ∈ Z+, and ω ∈ C,

[zn]
∑
k>0

ekz
∏

16j6k

(
e(j+ω)z2 − 1

)α
= ceβ

√
nρ

1
2
nn

1
2

(n+α)+αω
(
1 +O

(
n−

1
2

))
,(8.3)

the O-term holding uniformly for bounded ω, where β :=
√

6 log 2√
απ

, and

(c, ρ) :=
( √

3√
2απ

(
1

Γ(1+ω)

√
12
απ

(
6
απ2

)ω)α
e−

1
4α

+ 3
2απ2

(log 2)2 , 6
eπ2α

)
.

Proof. (Sketch) Similar to the proof of Proposition 17; note that Ak(z
2) =

∏
16j6k

(
ejz

2 − 1
)

has the same order of magnitude as Ak(r
2) when z = reiθ with θ ∼ π, but due to the presence

of ekz, the corresponding Cauchy integral remains asymptotically negligible. �

Note that the proof of Theorem 23 can be extended to the situation when m (m > 2) is
the smallest nonzero entry, that is, λj = 0 for 1 6 j < m and λm > 0, m > 2.

8.2. Self-dual Λ-Fishburn matrices with λ1 > 0. We now consider general self-dual
Λ-Fishburn matrices with λ1 > 0.

Lemma 25. The generating function for self-dual Λ-Fishburn matrices is given by (z mark-
ing the matrix size) ∑

k>0

Λ(z)k+1
∏

16j6k

(
Λ
(
z2
)j − 1

)
.

This lemma is a direct consequence of the case Λ = Z>0 given in [31].

Corollary 26. Assume that Λ(z) is analytic at z = 0 and λ1 > 0. Then the number of
self-dual Λ-Fishburn matrices of size n satisfies

[zn]
∑
k>0

Λ(z)k+1
∏

16j6k

(
Λ(z2)j − 1

)
= ceβ

√
nρ

1
2
nn

1
2

(n+1)
(
1 +O

(
n−

1
2

))
,

where β :=
√

6λ1
π

log 2, and (c, ρ) :=
(

3
√

2
π3/2 2

λ2
λ1
−λ1

2 e
−λ1

4
−π

2

24
+
π2λ2
12λ21

+
3λ1
2π2

(log 2)2

, 6λ1
eπ2

)
.

Proof. Condition (8.1) holds because d1 > 0 and e3 = 0. Apply Theorem 23 with ω0 = α = 1,
ω = 0, d1 = e2 = λ1, d2 = e4 = λ2. �

This implies that if λ1 is fixed, then no matter how many copies of other positive integers
are used as entries, the resulting asymptotic count of self-dual matrices of large size differs
only in the leading constant, provided that Λ(z) is analytic at the origin.
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Corollary 27. (Conjecture 5.4 of [31]) The number of primitive self-dual and self-dual
Fishburn matrices of size n are asymptotically given by

[zn]
∑
k>0

(1 + z)k+1
∏

16j6k

(
(1 + z2)j − 1

)
=
c

2
e−

π2

12 eβ
√
nρ

1
2
nn

1
2

(n+1)
(
1 +O

(
n−

1
2

))
,(8.4)

[zn]
∑
k>0

(1− z)−k−1
∏

16j6k

(
(1− z2)−j − 1

)
= ceβ

√
nρ

1
2
nn

1
2

(n+1)
(
1 +O

(
n−

1
2

))
,(8.5)

where β :=
√

6 log 2
π

and (c, ρ) :=
(

6
π3/2 e

π2

24
− 1

4
+ 3

2π2
(log 2)2 , 6

eπ2

)
.

Remark 2. The constant c ≈ 1.361951039 (see Figure 8.1) is given in an approximate
numerical form in [31]. By comparing these estimates with (1.1), we see that the proportion
of self-dual Fishburn matrices is asymptotically negligible (indeed factorially small).

LHS of (8.5)

eβ
√
nρ

1
2nn

1
2 (n+1)

(
1− 0.2√

n

)
LHS of (8.4)

eβ
√
nρ

1
2nn

1
2 (n+1)

(
1− 1.5√

n

)

6
π3/2 e

π2

24
− 1

4
+ 3

2π2
(log 2)2 ≈ 1.362 3

π3/2 e
−π

2

24
− 1

4
+ 3

2π2
(log 2)2 ≈ 0.299

Figure 8.1. Numerical convergence of the two ratios LHS of (8.5)

eβ
√
nρ

1
2nn

1
2 (n+1)

and

LHS of (8.4)

eβ
√
nρ

1
2nn

1
2 (n+1)

(with proper corrections for the O-terms) to their respective

limit c.

We now examine the three statistics (first row-size, diagonal sum, and the number of
1s) on random self-dual Λ-Fishburn matrices, beginning with the corresponding bivariate
generating functions. For convenience, we include the empty matrix with size 0.

Proposition 28 (Statistics on self-dual Λ-Fishburn matrices). For self-dual Λ-Fishburn
matrices, we have the following bivariate generating functions with z marking the matrix
size and v marking respectively

(i) the size of the first row

Λ(vz)
∑
k>0

Λ(z)k
∏

16j6k

(
Λ
(
vz2
)
Λ
(
z2
)j−1 − 1

)
,(8.6)

(ii) the size of the diagonal

Λ(vz)
∑
k>0

Λ(z)k
∏

06j<k

(
Λ
(
v2z2

)
Λ
(
z2
)j − 1

)
, and(8.7)
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(iii) the number of 1s∑
k>0

(Λ(z) + λ1(v − 1)z)k+1
∏

16j6k

((
Λ(z2) + λ1(v2 − 1)z2

)j − 1
)
.(8.8)

This is in analogy to Proposition 4, using the same ideas in [31] for counting self-dual
matrices.

Theorem 29 (Statistics on self-dual Λ-Fishburn matrices). Assume that Λ(z) is analytic at
z = 0 with λ1 > 0. Then in a random matrix (under the uniform distribution assumption on
self-dual Λ-Fishburn matrices of the size n), the size Xn of the first row (or the last column)
and the half of the diagonal size 1

2
Yn both satisfy a central limit theorem with logarithmic

mean and variance:

Xn − log n√
log n

d−→ N (0, 1), and
1
2
Yn − log n
√

log n

d−→ N (0, 1),

and for the number Zn of 1s, if λ2 > 0, then n−Zn tends to the convolution of two Poisson
distributions:

n− Zn
d−→ 2Poisson

(
λ2
λ1

log 2
)
∗ 4Poisson

(
λ2π2

12λ1

)
,

while if λ2 = 0, then P(Zn = n)→ 1.

Proof. (Sketch) The proofs for the random variables Xn and Yn
2

rely on Theorem 23, in
parallel of Theorem 22. For the number of 1s, Theorem 23 does not apply to (8.8) because
e2 = λ1v

2 is a complex number in general and e2 > 0 may not hold. However, the proof
there does apply by considering e(z/

√
e2), similar to Theorem 18. The result is the same as

if we apply formally Theorem 18 with ω0 = α = 1, ω = 0, d1 = λ1v, d2 = λ2, e2 = λ1v
2,

e3 = 0, e4 = λ2, yielding

E
(
vn−Zn

)
= 2

λ2
λ1

(v2−1)
e
λ2π

2

12λ21
(v4−1)(

1 +O
(
n−

1
2

))
,

where the first term on the right-hand side is the probability generating function of two
Poisson distributions if λ2 > 0. The right-side becomes 1 when λ2 = 0. �

8.3. Asymptotics of Λ-Fishburn matrices whose smallest nonzero entry is 2. We
consider Fishburn matrices whose smallest nonzero entry is 2. We assume that there is at
least one odd number in Λ, namely,

(8.9) λ2k−1 = 0, for 1 6 k 6 m and λ2, λ2m+1 > 0,

for m > 1. Otherwise, if Λ contains only even numbers, then, by dividing all entries by 2,
the corresponding asymptotics and distributional properties can be dealt with by the same
framework of Section 5. It turns out that m = 1 (that is, λ1 = 0 but λ2, λ3 > 0) and m > 2
have different asymptotic behaviors, and in the latter case the dependence on the parity of
n is more pronounced, one technical reason being that the condition (8.1) fails when m > 2,
and the odd case needs special treatment.

Lemma 30. Given a formal power series B(z) =
∑

n>0 bnz
n with bn ' c0ρ

n
0n

n+t, ρ0 6= 0, we
have, for even n,

[z
1
2
n]eβnzB(z) ' cρ

1
2
nn

1
2
n+t, with (c, ρ) :=

(
c02−te

2β
eρ0 , 1

2
ρ0

)
.
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Proof. Expand enβz at z = 2
eρ0n

, the asymptotic saddle-point of z−
1
2
nB(z), and estimate the

error as in Section 4.2. �

Theorem 31 (Λ-Fishburn matrices with 2 as the smallest entries). Assume that Λ is a
multiset of nonnegative integers satisfying (8.9) with Λ(0) = 1 and Λ(z) analytic at z = 0.
If m = 1, then the number of Λ-Fishburn matrices of size n satisfies

[zn]
∑
k>0

∏
16j6k

(
1− Λ(z)−j

)
= ceβ

√
nρ

1
2
nn

1
2
n+1
(
1 +O

(
n−

1
2

))
,

where β := λ3π

2
√

3λ
3/2
2

, and (c, ρ) :=
(

3
√

6
π2 e

π2

6

(
λ4
λ22
− 1

2
− 7λ23

8λ32

)
, 3λ2
eπ2

)
; and if m > 2, then

[zn]
∑
k>0

∏
16j6k

(
1− Λ(z)−j

)
=

{
c′eβ

√
nρ

1
2
nn

1
2
n+1
(
1 +O

(
n−

1
2

))
, if n is even;

cme
β
√
nρ

1
2
nn

1
2
n−m+ 5

2

(
1 +O

(
n−

1
2

))
, if n is odd,

(8.10)

where ρ and β remain the same, c′ := 6
√

6
π2 e

π2

6

(
λ4
λ22
− 1

2

)
, and cm :=

√
2π2m−3

3m−2 · λ2m+1

λ
m+1/2
2

e
π2

6

(
λ4
λ22
− 1

2

)
.

Proof. (Sketch) When m = 1, apply Theorem 23 to the right-hand side of (2.5). When

m = 2, following the proof of Theorem 23, we begin with the change of variables Λ(z) = ey
2

and then apply Theorem 18 and Lemma 30 to prove (8.10). In particular, when m > 2, by
splitting Λ(z) into odd and even parts, using Lagrange’s inversion formula in the form

[yk]z =
1

k
[tk−1]

( t

log Λ(t)

)k
(k = 1, 2, . . . ),

we deduce (8.10) when n is even; the expression of cm then follows from that in the even
case. See Theorem 33 of the first version of this paper on arXiv for details. �

In particular, the number of Fishburn matrices without occurrence of 1 as entries (Λ =
Z>0 \ {1}) satisfies

[zn]
∑
k>0

∏
16j6k

(
1−

( 1− z
1− z + z2

)j)
= ceβ

√
nρ

1
2
nn

1
2
n+1
(
1 +O

(
n−

1
2

))
,

where β := π
2
√

3
, and (c, ρ) :=

(
3
√

6
π2 e−

π2

16 , 3
eπ2

)
, which marks a significant difference with

that containing 1 as entries, as given in (1.1). Similar behaviors are also exhibited in the
asymptotics of row-Fishburn matrices without entry 1.

On the other hand, asymptotics of Λ-row-Fishburn matrices can be similarly treated, and
exhibits a very similar behavior.

8.4. Statistics on Λ-Fishburn matrices whose smallest nonzero entry is 2. Based on
the generating functions of Proposition 4, we now consider the behavior of a general random
Λ-Fishburn matrix in which 2 is the smallest nonzero entry.

Theorem 32. Assume that Λ is analytic at the origin and satisfies (8.9). Then in a random
matrix (under the uniform distribution on the set of all Λ-Fishburn matrices of size n), the
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size Xn of the first row (or the last column) and the diagonal size Yn are both asymptotically
normally distributed in the following sense:

Xn − log n√
log n

d−→ N (0, 1), and
Yn − 2 log n√

2 log n

d−→ N (0, 1),

while the limiting distribution of the number Zn of occurrences of 2 depends on m: if m = 1,
then

1
3
(n− 2Zn)− τ

√
n√

τ
√
n

d−→ N (0, 1),
(
τ := λ3π

2
√

3λ
3/2
2

)
,(8.11)

and if m > 2, then

Z∗n
d−→ Poisson

(
λ4π2

6λ2

)
, with Z∗n :=

{
1
2

(
1
2
n− Zn

)
, if n is even;

1
2

(
1
2
(n− 2m− 1)− Zn

)
, if n is odd.

Proof. When m = 1, the proof relies on Theorem 23, following the same ideas used in the
proof of Theorem 22, and when m > 2, the proof is similar to that of Theorem 31.

(i) Assume m = 1. For the first row sum, we have, by the generating function (2.11), the
approximation (7.3) and a modification of the proof of Theorem 23,

[zn]Λ(vz)
∑
k>0

Λ(z)k
∏

16j6k

((
Λ(vz)Λ(z)j−1 − 1

)(
Λ(z)j − 1

))
= c(v)ρ

1
2
nn

1
2
n+v
(
1 +O

(
n−

1
2

))
,

where (c(v), ρ) :=
( √

6
Γ(v)

(
3
π2

)v
e
π2

6

(
λ4
λ22
− 7λ23

8λ32
− 1

2

)
, 3λ2
eπ2

)
. Thus

E
(
vXn
)

=
1

Γ(v)

( 3

π2

)v−1

nv−1
(
1 +O

(
n−

1
2

))
,(8.12)

uniformly for v = O(1). Then the asymptotic normality (or Poisson(log n)) follows
from the Quasi-Powers theorem. When m > 2, by the same procedure as in the proof
of Theorem 31, we then deduce the same asymptotic approximation (8.12) when n is
even. When n is odd, the corresponding asymptotic approximation differs by a factor
of n−m as in Theorem 31 but the resulting normalizing expression is still (8.12).

(ii) Very similarly, for the diagonal size, by applying Theorem 23 to the generating function
(2.12), we deduce that

E
(
vYn
)

=
1

Γ(v)2

( 3

π2

)2(v−1)

n2(v−1)
(
1 +O

(
n−

1
2

))
,

uniformly for v = O(1). The same expression remains true when m > 2 and the proof
proceeds along the lines of that of Theorem 31.

(iii) Regarding the number of 2s, it is more involved. Consider first m = 1. Parallel to
(2.13) for the number of 1s, we now have the generating function∑

k>0

∏
16j6k

(
1−

(
Λ(z) + λ2(v − 1)z2

)−j)
=
∑
k>0

(
Λ(z) + λ2(v − 1)z2

)k+1
∏

16j6k

((
Λ(z) + λ2(v − 1)z2

)j − 1
)2
.

(8.13)
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Then if λ3 > 0, we get, by a similar modification of the proof of Theorem 23 (see
Theorem 29), the Quasi-Powers approximation,

E
(
v

1
2
n−Zn

)
= c(v)eτ

√
n(v

3
2−1)

(
1 +O

(
n−

1
2

))
,

where τ is given in (8.11) and c(v) := e
− 7λ23π

2

48λ32
(v3−1)+

λ4π
2

6λ22
(v2−1)

. The asymptotic normality
then results from the Quasi-Powers theorem; see [20, 28]. Indeed, Z∗n is asymptotically
Poisson distributed with parameter τ

√
n.

When m > 2, we obtain, by (8.13), the change of variables Λ(z) + (λ2− 1)vz2 = ey
2
,

and modifying the proof of (8.10) (see also the proof of Theorem 29),

E
(
v

1
2
n−Zn

)
∼

e
λ4π

2

6λ22
(v2−1)

, if n is even;

vm+ 1
2 e

λ4π
2

6λ22
(v2−1)

, if n is odd.

This proves the Poisson limit law.

�

Λ(z) = 1 + z2 + z3 Λ(z) = 1 + z2 + z4 + z5

N
(
π
√
n

2
√

3
, π
√
n

2
√

3

)
Poisson

(
π2

6

)
Figure 8.2. Theorem 32: histograms of the number of 2s in two differ-
ent compositions of random Λ-Fishburn matrices. Left: the distributions
P
(

1
3

(
n
2
− Zn

)
= bxµnc

)
with µn denoting the exact mean, which is asymp-

totic to π
√
n

2
√

3
; right: P

(
Z∗n = k

)
, where Z∗n := 1

2

(
n
2
− Zn

)
when n is even, and

Z∗n := 1
2

(
n
2
− 2− Zn

)
when n is odd, where the red line represents the corre-

sponding Poisson distribution.

For random Λ-row-Fishburn matrices, one can derive very similar types of results: zero-
truncated Poisson with parameter λ1

λ2
log 2 for the first row size, N (log n, log n) for the

diagonal size, and N
(
τ
√
n, τ
√
n
)

with τ := λ3π

2
√

6λ
3/2
2

or Poisson(λ4π
2

12λ22
) limit law when m = 1

or m > 2, respectively, for the number of 2s.

9. Conclusions

Motivated by the asymptotic enumeration of and statistics on Fishburn matrices and their
variants, we developed in this paper a saddle-point approach to compute the asymptotics of
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the coefficients of generating functions with a sum-of-product form, and applied it to several
dozens of examples. The approach is not only useful for the usual large-n asymptotics but
also effective in understanding the stochastic behaviors of random Fishburn matrices, with
or without further constraints on the entries or on the structure of the matrices. In particu-
lar, we identified a simple yet general framework and showed its versatile usefulness in this
paper. Many new asymptotic distributions of statistics on random matrices are derived in a
systematic and unified manner, which in turn demand further structural interpretations; for
example, since the normal approximations we derived in this paper can indeed all be approx-
imated by Poisson distributions with parameters depending on n (equal to the asymptotic
mean), a natural question is why Poisson laws with bounded or unbounded parameters are
ubiquitous in the random Λ-Fishburn matrices.

Other frameworks will be examined in a follow-up paper. In addition to different sum-
of-product patterns, we will also work out cases for which our approach in this paper
does not directly apply. For example, we have not found transformations for the series
[zn]

∑
k>0

∏
16j6k tanh(2jz), a special case of general theorems in [5], such that our saddle-

point method works, although it is known (see [5]) that∑
k>0

∏
16j6k

tanh(2jz) =
∑
n>0

a2n+1

n!
zn, and

∑
n>0

a2n+1

(2n+ 1)!
z2n+1 = tan(z),

where the a2n+1’s are the tangent numbers. For similar pairs of series of this type, see
[5, 26, 39].

Finally, the rank (or dimension) represents another important statistic on random matri-
ces. In our recent paper [30], we proved that the dimension of a random Λ-Fishburn matrices
follows a central limit theorem with linear mean and variance. Furthermore, the correspond-
ing dual problem of size distribution under large dimension is also addressed and follows a
quadratic type normal limit law. These answer two open problems in [8, 31] respectively.
Interestingly, the saddle-point approach combined with a powerful transformation formula
for q-series due to Andrews and Jeĺınek, is also useful in solving a conjecture of Stoimenow
on Vassiliev invariants (see [30]).
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