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Abstract. For any set Ω of non-negative integers such that {0, 1} $ Ω, we consider a random
Ω-k-tree Gn,k that is uniformly selected from all connected k-trees of (n+ k) vertices such that
the number of (k+1)-cliques that contain any fixed k-clique belongs to Ω. We prove that Gn,k ,

scaled by (kHkσΩ)/(2
√
n) where Hk is the k-th harmonic number and σΩ > 0, converges to the

Continuum Random Tree Te. Furthermore, we prove local convergence of the random Ω-k-tree
G◦

n,k
to an infinite but locally finite random Ω-k-tree G∞,k.

Keywords: partial k-trees, Continuum Random Tree, modified Galton–Watson tree

1. Introduction and main results

A k-tree is a generalization of a tree and can be defined recursively: it is either a complete
graph on k vertices (= a k-clique) or a graph obtained from a smaller k-tree by adjoining a new
vertex together with k edges connecting it to a k-clique of the smaller k-tree (and thus forming a
(k+1)-clique). In particular, a 1-tree is a usual tree. (Note that the parameter k is always fixed.)
Subgraphs of k-trees are called partial k-trees; see Figure 1.1.
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Figure 1.1. A 2-tree (left), a partial 2-tree (middle) and an Ω-2-tree (right)
where Ω = {0, 1, 2}.

A partial k-tree is an interesting graph from an algorithmic point of view since many NP-hard
problems on graphs have polynomial, in fact usually linear, dynamic programming algorithms
when restricted to partial k-trees for fixed values of k [8, 63, 38]; such NP-hard problems include
maximum independent set size, minimal dominating set size, chromatic number, Hamiltonian
circuit, network reliability and minimum vertex removal forbidden subgraph [7, 13]. Several graphs
which are important in practice [48], have been shown to be partial k-trees, among them are

(1) Trees/ Forests (partial 1-trees)
(2) Series parallel networks (partial 2-trees)
(3) Outplanar graphs (partial 2-trees)
(4) Halin graphs (partial 3-trees); see [37].

However, other interesting graph classes like planar graphs or bipartite graphs are not partial
k-trees. On the other hand, partial k-trees are very interesting from a combinatorial point of
view, although the enumeration of partial k-trees for general k is still missing. The k-trees are
the maximal graphs with treewidth ≤ k, in the sense that adding another edge would increase the
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treewidth. The number of k-trees has been counted in various ways; see [11, 56, 29, 18, 40, 41,
30, 32, 34]. As usual a graph on n vertices is called labelled if the integers from {1, 2, . . . , n} are
assigned to its vertices (one-to-one).

In this paper, we introduce a subset of connected labelled k-trees, called Ω-k-trees, as a first
attempt to approach the profile of connected labelled partial k-trees by using the enumeration
of labelled k-trees. In what follows, without specifying otherwise, we assume that Ω-k-trees are
all labelled and a random Ω-k-tree is uniformly selected from the class of labelled Ω-k-trees with
(n+ k) vertices.

Definition 1 (Ω-k-tree). For any set Ω of non-negative integers which contains 0, 1 and at least
one integer greater than 1, an Ω-k-tree is a connected k-tree such that the number of (k+1)-cliques
that contain any fixed k-clique belongs to the set Ω.

A rooted Ω-k-tree is an Ω-k-tree rooted at a k-clique. If Ω = N0 = {0, 1, 2, . . .}, an N0-k-tree
is a k-tree. See Figure 1.1 for an example of an Ω-2-tree. We remark that it is necessary to allow
0 ∈ Ω since by construction a k-clique is the smallest k-tree. We also need the condition 1 ∈ Ω.
Otherwise any k-tree, other than a single k-clique, is infinite. We disregard the case Ω = {0, 1} in
order to consider just non-trivial classes.

Darrasse and Soria [18] proved that the expected distance between pairs of vertices in a random
k-tree with n vertices converges to a Rayleigh distribution after rescaling it by 1/

√
n. The Rayleigh

distribution also arises as the distance between typical vertices in Aldous’ Continuum Random Tree
(CRT) [3, 4, 5]. This motivates the question whether the classical convergence of 1-trees to the
CRT may be extended to the case k ≥ 2 and to models of random partial k-trees.

Since Aldous’s pioneering work on the Galton–Watson trees, the CRT has been established as
the limiting object of a large variety of combinatorial structures [39, 61, 57, 58, 16, 44, 12, 17,
54, 14]. A key idea in the study of these combinatorial objects is to relate them to trees endowed
with additional structures by using an appropriate bijection. In the present case of Ω-k-trees,
we encode them as so-called (k,Ω)-coding trees via a bijection due to Darrasse and Soria [18],
which was originally used to enumerate k-trees and to recursively count the distance between
any two vertices in a random k-tree. Furthermore, in order to build a connection between the
distance of two vertices in a random Ω-k-tree and the distance of two vertices in a critical Galton–
Watson tree, we introduce the concept of a size-biased (ξ•, ξ◦)-multitype Galton–Watson tree. This
is adapted from the size-biased Galton–Watson tree which was defined by Kesten [47], used by
Lyons, Pemantle and Peres in [52], by Addario-Berry, Devroye and Janson in [1], and was further
generalized to the size-biased R-enriched tree by Panagiotou, Stufler and Weller [58].

When we analyze Ω-k-trees, it turns out that it is convenient to consider the number of hedra
instead of the number of vertices as the size of an Ω-k-tree (we adopt the notions from [34]). A
hedron is a (k + 1)-clique in an Ω-k-tree, and by definition an Ω-k-tree with n hedra has (n + k)
vertices. A front of a k-tree is a k-clique.

Our first main result establishes the convergence of a random k-tree to the CRT with respect
to the Gromov–Hausdorff–Prokhorov distance.

Theorem 1. Let Gn,k be the class of labelled Ω-k-trees with n hedra and denote by Gn,k a random
Ω-k-tree that is uniformly selected from the class Gn,k. Let µGn,k

be the uniform measure on the
set of vertices of Gn,k. Then

(Gn,k,
kHkσΩ
2
√
n

distGn,k
, µGn,k

)
d−→ (Te, de, µe)

holds with respect to the Gromov–Hausdorff–Prokhorov metric. Here distGn,k
is the graph distance

of Gn,k, Hk = 1+1/2+ . . .+1/k denotes the k-th harmonic number and σΩ is a positive constant.
If Ω = N0, then the constant σN0 equals 1.

This theorem shows in particular that the diameter and the distance of two independently
selected random vertices in a random Ω-k-tree Gn,k are of order

√
n, and that up to scaling factors

we obtain the same limiting distribution as that for random 1-trees. In fact, by general properties
of the Gromov–Hausdorff–Prokhorov metric [55, Prop. 10], this statement may be extended to the
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case of any constant number of independent and uniform random vertices. Our proofs also show
that the diameter of the random k-tree Gn,k may be stochastically bounded by the diameter of
a critical Galton–Watson tree conditioned to be large, where the offspring distribution has finite
exponential moments. Hence the corresponding tail-bounds for the height of large Galton–Watson
trees [1] allow us to deduce arbitrarily large uniform integrability for the rescaled diameter and
rescaled distance of two random vertices in Gn,k. Together with the distributional limits, this
yields precise asymptotic expressions for all moments.

Instead of the class Gn,k, we could equivalently consider the class of Ω-k-trees with n hedra
that are rooted at a fixed labelled front. In subsection 2.1 we will argue that the two models are
equivalent and hence our results apply to both.

We recall that (partial) 1-trees are just trees and partial 2-trees are series-parallel graphs. In
both cases it is known [5, 57] that the CRT appears as the scaling limit (if we scale the metric by
c/
√
n for some positive constant c). We conjecture that the CRT also arises as the scaling limit

of partial k-trees for larger k. At the moment, this property seems to be out of reach, since there
is no precise asymptotic analysis of partial k-trees if k ≥ 3.

Conjecture 1. Let PT n,k be the class of all connected labelled partial k-trees and let PTn,k be
a uniform random graph from PT n,k. Then, for every k ≥ 1, PTn,k converges toward the CRT
in the Gromov–Hausdorff–Prokhorov sense, after rescaling the metric by a factor ck/

√
n for some

constant ck > 0.

Theorem 1 describes the asymptotic global metric properties of random k-trees, but gives little
information about asymptotic local properties. Hence we provide a second limit theorem that
establishes local weak convergence of the random Ω-k-tree Gn,k toward an infinite but locally finite
Ω-k-tree G∞,k. This type of convergence describes the asymptotic behaviour of neighborhoods
around a uniform random front.

Theorem 2. Let G◦
n,k be the random front-rooted Ω-k-tree that is obtained by marking a uniform

random front of the random Ω-k-tree Gn,k. Then, as n tends to infinity, the random graph G◦
n,k

converges in the local-weak sense toward a front-rooted infinite Ω-k-tree G∞,k, i.e.,

G
◦
n,k

d−→ G∞,k.

Our proof of Theorem 2 builds on the classical local convergence of simply generated trees
toward a modified Galton–Watson tree. See for example Theorem 7.1 in Janson’s survey [42],
which unifies some results by Kennedy [46], Aldous and Pitman [6], Grimmett [36], Kolchin [49],
Kesten [47], Aldous [4], Jonsson and Stefánsson [45] and Janson, Jonsson and Stefánsson [43].

A result similar to Theorem 2 is known for neighborhoods of random vertices in partial 2-trees
since series-parallel graphs belong to the family of subcritical graph classes [62, 33, 60]. This
motivates the following conjecture.

Conjecture 2. For every k ≥ 1, the random labelled partial k-tree PTn,k converges in the local-
weak sense. That is, the neighborhoods of a random vertex in PTn,k converge weakly toward the
neighborhoods of an infinite rooted partial k-tree PT∞,k as n tends to infinity.

The plan of the paper is as follows. In Section 2 we recall the combinatorial background for
Ω-k-trees, introduce a multitype Galton–Watson process in order to uniformly generate a random
(k,Ω)-coding tree, describe Darrasse and Soria’s algorithm to compute the distances between two
vertices in an Ω-k-tree, present Aldous’s result on the convergence of critical Galton–Watson trees
to the CRT Te, and recall the notion of local convergence. In Section 3 we prove our first main
result – Theorem 1, and in Section 4 our second main result – Theorem 2.

2. Combinatorics, multitype Galton–Watson Trees and Graph Limits

For any integer i ≥ 0, we set [i] := {1, 2, . . . , i}. Let Ω ⊂ N0 denote a set of non-negative
integers which contains 0, 1 and at least one integer greater than 1. We will review the generating
function approach from [18] to count the number of Ω-k-trees. The key ingredient is a bijection
between rooted Ω-k-trees and (k,Ω)-coding trees.
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Definition 2 ((k,Ω)-coding tree). For any set Ω of non-negative integers which contains 0, 1 and
at least one integer greater than 1, a (k,Ω)-coding tree of size n is a tree T consisting of kn + 1
white nodes and n black nodes which satisfies the following conditions:

(1) T is rooted at a white node. Every white node has an unordered list of black nodes as
children and every black node has an ordered list of precisely k white nodes as children.

(2) The number of black children of the white root belongs to the set Ω and the number of
black children of any other white one lies in the shifted set

Ωout = {i | i+ 1 ∈ Ω, i ≥ 0}.

(3) The white root of T is labelled by a strictly increasing sequence (a1, a2, . . . , ak) where
A = {a1, a2, . . . , ak} is a k-subset of [n+ k]. The black nodes are labelled by the integers
from the set [n+ k] \A.

(4) We label non-root white nodes of T recursively: if a black node is labelled with r and it is a
child of a white node labelled with the sequence (r1, r2, . . . , rk), then starting from the left,
the i-th child of the black node r is labelled with the sequence (r1, . . . , ri−1, r, ri+1, . . . , rk),
which is a sequence obtained from (r1, r2, . . . , rk) by replacing ri by r.

In this way the labels on the white root and on the black nodes determine the labels on the non-
root white nodes. If the white root of a (k,Ω)-coding tree C has precisely one black child, we call
C a reduced (k,Ω)-coding tree.

The following classes and random graphs will play a key role in our arguments:

(1) Gn,k: the class of labelled Ω-k-trees with n hedra.
(2) Gn,k: a random Ω-k-tree that is uniformly selected from the class Gn,k.
(3) G◦n,k: the class of labelled Ω-k-trees with n hedra that are rooted at a front.

(4) G◦
n,k: a random Ω-k-tree Gn,k that is rooted at a uniformly chosen front. This is equivalent

to uniformly selecting an element from G◦n,k.
(5) G�n,k: the class of labelled Ω-k-trees with n hedra that are rooted at a fixed front [k].

(6) G•n,k: the class of labelled Ω-k-trees with n hedra that are rooted at a fixed front [k] and
this root front is contained in only one hedron.

(7) Cn,k: the class of (k,Ω)-coding trees with n black vertices, such that the white root is
labelled with (1, 2, . . . , k).

(8) Cn,k: a random (k,Ω)-coding tree that is uniformly selected from Cn,k.
(9) Bn,k: the class of reduced (k,Ω)-coding trees with n black vertices, such that the white

root is labelled with (1, 2, . . . , k).
(10) Bn,k: a random reduced (k,Ω)-coding tree that is uniformly selected from Bn,k.
(11) G•

n,k: a random Ω-k-tree that uniquely corresponds to Bn,k under the bijection ϕ from
subsection 2.2. This is equivalent to choosing a random Ω-k-tree uniformly from the
class G•n,k.

(12) G�
n,k: a random Ω-k-tree that uniquely corresponds to Cn,k under the bijection ϕ. This is

equivalent to choosing a random Ω-k-tree uniformly from the class G�n,k.

2.1. Comparison of different rooting procedures. Any Ω-k-tree with n hedra has precisely
kn+1 fronts. Hence it makes no difference whether we uniformly select an element from the class
Gn,k or from the class G◦n,k of labelled Ω-k-trees with n hedra that are rooted at a front. Instead of

studying the random graph Gn,k (as in Theorem 1) or the random graph G◦
n,k (as in Theorem 2),

it suffices to consider uniformly selected elements from the class G◦n,k.
We can even make another simplification: For any k-subset A = {a1, a2, . . . , ak} ⊂ [n+ k] we

may consider the subset MA ⊂ G◦n,k of elements where the vertices of the root-front are labelled

with a1, a2, . . . , ak. Given any other k-subset A′ ⊂ [n+ k] we can choose a bijection f : [n+ k]→
[n+ k] with f(A) = A′. Let ψf : G◦n,k → G◦n,k denote the corresponding relabelling function, that

permutes the labels on the vertices according to f . As ψf (MA) ⊂ MA′ and ψf (MA′) ⊂ MA, it
follows that ψf induces a bijection from MA to MA′ .
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Thus, G◦n,k is the disjoint union of
(

n+k
k

)

-many relabelled versions of the class G�n,k := M[k],
where the root-front is required to be labelled from 1 to k. Hence, instead of studying Gn,k or

G◦
n,k, it suffices to study uniform elements from the class G�n,k.

2.2. Correspondence between k-trees and coding trees. There is a bijection

ϕ : G�n,k → Cn,k

between the class G�n,k of front-rooted Ω-k-trees with n hedra (where the root-front is labelled from

1 to k) and the class Cn,k of all (k,Ω)-coding trees with n black vertices where the white root is
labelled with the sequence (1, 2, . . . , k).

The correspondence ϕ is defined such that black nodes in a (k,Ω)-coding tree correspond to
hedra in a Ω-k-tree. Every black node also gets a label which is equal to the label of one of the
vertices of the corresponding hedron. A white node in a (k,Ω)-coding tree corresponds to a front
of the Ω-k-trees and is labelled by the strictly increasing sequence (a1, a2, . . . , ak) of labels of the
corresponding front. A black node is a child of a white node if the corresponding hedron contains
the corresponding front and the label of the black node is just the label of the vertex that is not
contained in the front. Thus, if we start with the root-front of the Ω-k-tree, we can recursively
build up a corresponding (k,Ω)-coding tree; see Figure 2.1.
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Figure 2.1. Example of the correspondence between an Ω-2-tree (where Ω =
{0, 1, 2, 3}) with front labels 1, 2 (left) and a (2,Ω)-coding tree Cn,2 rooted at a
white node labelled by (1, 2) (right).

With the help of this correspondence ϕ, the problem of counting Ω-k-trees with n hedra is
reduced to counting the corresponding (k,Ω)-coding trees with n black nodes. In what follows we
use the notation ◦-rooted (k,Ω)-coding trees if the white root has a fixed label and use the notation
◦ − • (k,Ω)-coding tree if the white root of a reduced (k,Ω)-coding tree has a fixed label.

Let G�k be the class of Ω-k-trees rooted at a fixed front {1, 2, . . . , k}, Ck be the class of (k,Ω)-
coding trees, and Bk be the class of ◦ − • (k,Ω)-coding trees. Clearly the correspondence ϕ also
establishes a bijection ϕ : G�k → Ck. The next goal is to formulate a recursive structure of Ck and
Bk, where we make use of the standard construction rules for labelled combinatorial objects [28].
In this language every (k,Ω)-coding tree can be identified as a set of ◦−• (k,Ω)-coding trees with
the outdegree set Ω:

Ck = SetΩ(Bk).(2.1)
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In terms of exponential generating functions (where the size is always the number of black nodes),
we thus get

Ck(z) =
∑

i∈Ω

(Bk(z))
i

i !
.(2.2)

We continue to decompose ◦−• (k,Ω)-coding tree. Let C◦k be the class of ◦-rooted (k,Ω)-coding
trees that are contained in the ◦−• (k,Ω)-coding trees. Then every tree from C◦k can be identified
as a set of ◦−• (k,Ω)-coding trees with the outdegree set Ωout = {i | i+1 ∈ Ω, i ≥ 0} of the white
nodes. Moreover, every ◦ − • (k,Ω)-coding tree can be decomposed into a k-tuple of ◦-rooted
(k,Ω)-coding trees. This yields the following specification:

Bk = {•} ∗ Seqk(C◦k) and C◦k = SetΩout(Bk).(2.3)

In terms of exponential generating functions, one gets

Bk(z) = z · C◦
k(z)

k and C◦
k (z) =

∑

i+1∈Ω
i≥0

(Bk(z))
i

i !
.(2.4)

In particular Bk(z) satisfies

(2.5) Bk(z) = z









∑

i+1∈Ω
i≥0

(Bk(z))
i

i !









k

.

By applying standard theory (see [28]) it follows that Bk(z) has finite radius of convergence ρk,Ω
and has also the property that Bk(ρk,Ω) is finite. In particular the value of Bk(ρk,Ω) is given by
the relation

∑

i+1∈Ω
i≥0

(ki− 1)

i!
(Bk(ρk,Ω))

i = 0.(2.6)

In principle we have to distinguish between the aperiodic case, where all coefficients of Bk(z) are
positive and ρk,Ω is the only singularity on the radius of convergence |z| = ρk,Ω, and the periodic
case, where Bk(z) has several singularities on its radius |z| = ρk,Ω, see [9]. In the periodic case
the coefficients [zn]Bk(z) are positive precisely for n = 1 mod d, where d = gcd(Ωout). In both
cases we obtain asymptotics for [zn]Bk(z), see Lemma 8 and Theorem 3 in [9]. So for the sake of
simplicity, we assume that we are working in the aperiodic case. That is, [zn]Bk(z) has a unique
dominant singularity z = ρk,Ω.

It follows immediately from (2.2) and (2.4) that Ck(ρk,Ω) < ∞ and C◦
k(ρk,Ω) < ∞. We set

bk,Ω(n) = n![xn]Bk(x) and ck,Ω(n) = n![xn]Ck(x). One can analyze the asymptotic behaviors of
bk,Ω(n) and ck,Ω(n) from the recursive equation (2.5), see [20, 28]. This yields

bk,Ω(n) ∼ d1n−3/2n!ρ−n
k,Ω and ck,Ω(n) ∼ d2n−3/2n!ρ−n

k,Ω(2.7)

for some positive constants d1, d2. In order to obtain exact expressions for bk,Ω(n) we may apply
the Lagrange inversion formula to Equation (2.5). For the case Ω = N0 this yields

bk,N0(n) = (n− 1)![xn−1] exp(knx) = (kn)n−1(2.8)

and

ck,N0(n) = (n− 1)![xn−1] exp((kn+ 1)x) = (kn+ 1)n−1 = (kn+ 1)n−1.(2.9)

Hence the number of (k,Ω)-coding trees having an arbitrarily labelled root is given by
(

n+ k

k

)

(kn+ 1)n−2,

which is consistent with the classical enumeration of k-trees [11, 56, 29, 18].
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2.3. Multitype Galton–Watson tree. In order to generate (uniformly) a ◦ − • (k,Ω)-coding
tree we make use of a multitype Galton–Watson process. Let ξ◦ be an integer-valued random
variable with probability distribution

P[ξ◦ = i] =
1

C◦
k (ρk,Ω)

(Bk(ρk,Ω))
i

i !
if i ∈ Ωout and P[ξ◦ = i] = 0 otherwise.(2.10)

Furthermore let ξ• be another integer-valued random variable with probability distribution

P[ξ• = k] = 1 and P[ξ• = i] = 0 if i 6= k.(2.11)

The (ξ•, ξ◦)-multitype Galton–Watson treeM is then given by the family tree of a Galton–Watson
branching process with alternating offspring distributions ξ• and ξ◦. We start with a black node
•, which gives birth to a set of white nodes ◦ according to offspring distribution ξ•, and each white
node ◦ gives birth to a set of black nodes • according to offspring distribution ξ◦. We denote by
|M| the number of black nodes ofM.

Every (ξ•, ξ◦)-multitype Galton–Watson tree generated by this process is a plane tree, where
the children of each node (white or black) are equipped with a left-to-right order. For simplicity,
we assume that the white root of any ◦−• (k,Ω)-coding tree is always labelled with the sequence
(1, 2, . . . , k).

In Lemma 3 we consider all different labellings of a (ξ•, ξ◦)-multitype Galton–Watson tree,
where the labels on the white non-root nodes are determined by the labels on the black nodes and
the white root. Two labellings are regarded as different if the edge sets are different.

Lemma 3. The following procedure terminates almost surely:

(1) Draw a (ξ•, ξ◦)-multitype Galton–Watson treeM.
(2) Choose a uniform random labelling ofM such that all black nodes ofM are labelled with

distinct integers (k + 1), (k + 2), . . . , (k + |M|).
(3) Add a white root toM and label it with the sequence (1, 2, . . . , k).

This procedure draws a random ◦ − • (k,Ω)-coding tree Bk according to a critical Boltzmann
distribution. That is, for every B ∈ Bn,k (of size n ≥ 1) we have

P[Bk = B] =
(ρk,Ω)

n

n!Bk(ρk,Ω)
.

Proof. Note that different (ξ•, ξ◦)-multitype Galton–Watson trees after step (1) could lead to the
same ◦ − • (k,Ω)-coding tree after steps (2) and (3); see Figure 2.2.

Let B be any ◦ − • (k,Ω)-coding tree of size n and let T be the underlying unlabelled (k,Ω)-
coding tree of B after we remove the white root and the edge connecting the white root.

We denote by E(T ) the set of embeddings of T into the plane where only the children of white
nodes are equipped with a left-to-right order. Though every embedding of T is a (ξ•, ξ◦)-multitype
Galton–Watson tree, only when applying the steps (2) and (3) on two different embeddings from
the subset E(T ) can we possibly generate the same (k,Ω)-coding tree B; see Figure 2.2 for an
example. The essential reason is the Set-relation in (2.3), where only the children of every white
node in B are equipped with the Set-relation (without the left-to-right order).

If T has n black nodes, i.e., |T | = n, then T has kn white nodes. Suppose that the outdegree
sequence of these kn white nodes is (d1, d2, . . . , dkn) where di ∈ Ωout. Clearly, d1+d2+ · · ·+dkn =
n− 1. By combining (2.10), (2.11) and (2.4), we find that every (ξ•, ξ◦)-multitype Galton–Watson
treeM that is an embedding of T in E(T ) is drawn with probability

P[M = T ∗ where T ∗ ∈ E(T )] = (P[ξ• = k])n
kn
∏

i=1

P[ξ◦ = di],

=

(

1

C◦
k (ρk,Ω)

)kn
(Bk(ρk,Ω))

n−1

∏kn
i=1 di!

,

=
(ρk,Ω)

n

Bk(ρk,Ω)

1
∏kn

i=1 di!
.
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For T ∗ ∈ E(T ), let L(T ∗) be the set of different labellings of T ∗, where all black nodes are

labelled with distinct integers (k + 1), (k + 2), . . . , (k + n). Clearly we have |L(T ∗)| = |L(T̂ )| for
all T ∗, T̂ ∈ E(T ). Since the labels on all black nodes of T ∗ determine the labels on the remaining
white nodes, it suffices to count different labellings on black nodes. As we will show next, this
leads us to the formula

|L(T ∗)| = n

(

n− 1

d1, d2, . . . , dkn

)

|E(T )| = n!
∏kn

i=1 di!
|E(T )|.(2.12)

First there are n ways to label the black root of T ∗. Second, for the white node with outde-
gree d1, there are

(

n−1
d1

)

ways to choose the labels on its black children, where we assume that
T1,1, T1,2, . . . , T1,ℓ1 are distinct subtrees rooted at all these black children appearing with multi-
plicities m1,1,m1,2, . . . ,m1,ℓ1 , respectively. Then m1,1 +m1,2 + · · ·+m1,ℓ1 = d1 and there are

δd1 :=

(

d1
m1,1,m1,2, . . . ,m1,ℓ1

)

ways to assign d1 labels to all these black children. We continue this process for the remaining
white nodes with outdegrees d2, . . . , dkn and obtain

|L(T ∗)| = n

(

n− 1

d1

)(

n− 1− d1
d2

)

· · ·
(

n− 1−∑kn−1
i=1 di

dkn

) kn
∏

i=1

δdi
= n

(

n− 1

d1, d2, . . . , dkn

) kn
∏

i=1

δdi
,

where δdi
(2 ≤ i ≤ kn) is defined in the same way as δd1 . Assume that Ti,1, Ti,2, . . . , Ti,ℓi are

distinct subtrees rooted at each of the black children of a white node with outdegree di, which
appear with multiplicities mi,1,mi,2, . . . ,mi,ℓi , respectively. Then mi,1 +mi,2 + · · · +mi,ℓi = di
and there are

δdi
:=

(

di
mi,1,mi,2, . . . ,mi,ℓi

)

ways to distribute di labels on the black children of a white node with outdegree di. We note that
∏kn

i=1 δdi
is exactly the number |E(T )| of different embeddings of T into the plane, where only the

children of every white node are equipped with the left-to-right order. Thus, (2.12) follows.
For every T ∗ ∈ E(T ) we choose a labelling of T ∗ uniformly at random, and there is only one

labelling of T ∗ such that B is generated after step (3). That is, P[Bk = B|M = T ∗] = (|L(T ∗)|)−1.
Consequently, the probability of drawing B of size n is given by

P[Bk = B] =
∑

T∗∈E(T )

P[M = T ∗]P[Bk = B|M = T ∗] = P[M = T ∗]
|E(T )|
|L(T ∗)| =

(ρk,Ω)
n

n!Bk(ρk,Ω)
.

This proves the lemma. �

Recall that by (2.1) every element of the class Ck may be decomposed into a collection of
elements from the class Bk, where the number of components belongs to Ω. Let η◦ denote a
random integer from Ω with distribution given by

P[η◦ = i] =
1

Ck(ρk,Ω)

(Bk(ρk,Ω))
i

i!
,(2.13)

for all i ∈ Ω. We are going to make use of the following critical Boltzmann sampling procedure for
the class Ck, which will be used in the proof of Theorem 2; see Section 4. It provides a coupling
of a random (k,Ω)-coding tree with a forest of (ξ•, ξ◦)-multitype Galton–Watson trees. (For the
reader’s convenience we provide a self-contained proof, but the result may also be deduced from
more general sampling principles given in [22].)

Lemma 4. The following procedure terminates almost surely:

(1) Draw η◦ independent copies (M1,M2, . . . ,Mη◦
) of (ξ•, ξ◦)-multitype Galton–Watson trees.

(2) Choose a uniform random ordered set partition (L1, L2, . . . , Lη◦) of [
∑η◦

i=1 |Mi| + k] \ [k]
such that |Li| = |Mi|.

(3) For each i, choose a uniform random labelling ofMi such that all black nodes of Mi are
labelled with distinct integers from Li.
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1, 2

3

3, 2 1, 3

5

5, 3 1, 5

4

4, 3 1, 4

6

6, 3 5, 6

1, 2

3

3, 2 1, 3

4

4, 3 1, 4

5

5, 3 1, 5

6

6, 3 5, 6

=

T̂ T ∗ B

Figure 2.2. T̂ and T ∗ are two different (ξ•, ξ◦)-multitype Galton–Watson trees
after step (1), which lead to the same ◦ − • (k,Ω)-coding tree B after steps (2)
and (3) in Lemma 3.

(4) Form a sequence (B1,B2, . . . ,Bη◦) by adding a white root labelled with the sequence (1, 2, . . . , k)
to every Mi. Glue together the white roots of all Bi, 1 ≤ i ≤ η◦.

This procedure draws a random ◦-rooted (k,Ω)-coding tree Ck according to a critical Boltzmann
distribution. That is, for every C ∈ Cn,k (of size n) we have

P[Ck = C] =
(ρk,Ω)

n

n!Ck(ρk,Ω)
.

Proof. For any ◦-rooted (k,Ω)-coding tree C ∈ Cn,k, assume that C can be decomposed into a
set {B1, B2, . . . , Bt} of Bk-objects. If Li denotes the label set of Bi for all 1 ≤ i ≤ t, then
{L1, L2, . . . , Lt} forms a partition of the set [n+ k] \ [k].

The event Ck = C means that η◦ = t and {B1,B2, . . . ,Bt} = {B1, B2, . . . , Bt}. In other words,

P[Ck = C] = P[η◦ = t]P[{B1,B2, . . . ,Bt} = {B1, B2, . . . , Bt}].
For any permutation π = π1π2 · · ·πt ∈ St we have

P[(B1,B2, . . . ,Bt) = (B1, B2, . . . , Bt)] = P[(B1,B2, . . . ,Bt) = (Bπ1 , Bπ2 , . . . , Bπt)],

since Bi d
= Bk (for 1 ≤ i ≤ t), which leads to

P[Ck = C] = t!P[η◦ = t] · P[(B1,B2, . . . ,Bt) = (B1, B2, . . . , Bt)].(2.14)

We may express the probability P[(B1, . . . ,Bt) = (B1, . . . , Bt)] by the product

P[(B1, . . . ,Bt) = (B1, . . . , Bt) | (L1, . . . , Lt) = (L1, . . . , Lt)] · P[(L1, . . . , Lt) = (L1, . . . , Lt)].

It follows from Lemma 3 that Bi d
= Bk is uniformly distributed among the |B|Li|,k| many Bk-objects

with the label set Li for all i. Let us set ℓi = |Li| for all 1 ≤ i ≤ t. Then

P[(B1,B2, . . . ,Bt) = (B1, B2, . . . , Bt)] = P[(L1, L2, . . . , Lt) = (L1, L2, . . . , Lt)]

t
∏

i=1

1

|Bℓi,k|
.(2.15)

Moreover, in view of Lemma 3, we may write

P[(L1, L2, . . . , Lt) = (L1, L2, . . . , Lt)] =
ℓ1!ℓ2! · · · ℓt!

n!
P[(|L1|, |L2|, . . . , |Lt|) = (ℓ1, ℓ2, . . . , ℓt)]

=
1

n!

t
∏

i=1

|Bℓi,k|(ρk,Ω)ℓi
Bk(ρk,Ω)

.
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Hence (2.15) now reads

P[(B1,B2, . . . ,Bt) = (B1, B2, . . . , Bt)] =
(ρk,Ω)

n

n!Bk(ρk,Ω)t
.

Combining this with (2.13) and (2.14) yields

P[Ck = C] =
(ρk,Ω)

n

n!Ck(ρk,Ω)
,

which completes the proof of the lemma. �

Note that ◦ − • (k,Ω)-coding trees satisfy the specification (2.4), but the graph distance does
not represent the distance relation in the corresponding Ω-k-trees; see Figure 2.1. Let Bn,k denote
a random ◦ − • (k,Ω)-coding tree that is uniformly chosen from the class Bn,k, that is, Bn,k =
(Bk : |Bk| = n) where Bk is a random (k,Ω)-coding tree that is generated by Lemma 3.

2.4. Ω-k-tree distance algorithm. Let Cn,k be a random (k,Ω)-coding tree and G�
n,k = ϕ−1(Cn,k)

be the corresponding Ω-k-tree under the inverse bijection ϕ−1, where ϕ is given in subsection 2.2.
In particular G�

n,k is rooted at the front [k]. We use the notation (im, jk−m) to represent a sequence

of length k with m occurrences of i, followed by (k −m) occurrences of j.
The purpose of the following procedure is to determine the distances to vertex 1 in an Ω-k-tree

G�
n,k. More precisely Darrasse and Soria [18] provided an algorithm for this task by marking the

distances on the corresponding (k,Ω)-coding tree Cn,k, which is similar to the algorithm given
by Proskurowski in [59]. Note that every black node of the (k,Ω)-coding tree is related to a
vertex of the corresponding Ω-k-tree via its label, and the vertices that label a white node of the
(k,Ω)-coding tree represent k vertices that constitute a front of the corresponding Ω-k-tree.

Darrasse and Soria’s algorithm runs as follows:

Algorithm 1: Distances in an Ω-k-tree
Input: a (k,Ω)-coding tree C and

a sequence (ai)
k
i=1 = (0, 1k−1)

Output: an association table (vertex, distance)
p := min{ai}ki=1 + 1 and A = ∅
for all sons v of the root C do

A := A ∪ {(v, p)}
for i := 1→ k do
A← A∪ the recursive call on the i-th son

of v and (a1, . . . , ai−1, p, ai+1, . . . , ak)
return A

For example, we implement this algorithm on the (2,Ω)-coding tree (right) in Figure 2.1, which
provides the distance of every black node to vertex 1 in Figure 2.3. The distance sequences on the
white nodes help us to recursively mark the distances on the black nodes.

Remark 1. Based on this distance algorithm, Darrasse and Soria used a generating function ap-
proach to deduce a Rayleigh limiting distribution for the expected distances (scaled by

√
n) between

pairs of vertices in a random k-tree; see [18].

2.5. Gromov–Hausdorff–Prokhorov convergence and the CRT. We shall briefly recall
some facts concerning the CRT and the Gromov–Hausdorff–Prokhorovmetric. We refer the reader
to [15, 26, 2] and [55, Sec. 6] for more details. Let g : [0, 1]→ [0,∞) be a non-negative continuous

function such that g(0) = g(1) = 0. We may use it to define a pseudo-metric d̃g by setting

d̃g(u, v) = g(u) + g(v)− 2 inf
min{u,v}≤s≤max{u,v}

g(s)

for all u, v ∈ [0, 1]. Define an equivalence relation ∼ on [0, 1] by letting x ∼ y if d̃g(x, y) = 0. Let

Tg = [0, 1]/∼ and let dg be the metric induced on Tg by d̃g. Then the associated metric space
(Tg, dg) is an R-tree (see [31]). We define the Continuum Random Tree (CRT) to be the R-tree
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1, 2

6

6, 2 1, 6

5

5, 6 1, 5

3

3, 6 1, 3

4, 6 3, 4

7

7, 3 1, 7

8

8, 7 1, 8

49

9, 6 5, 9

10

10, 9 5, 10

0, 1

1

1, 1 0, 1

1

1, 1 0, 1

1

1, 1 0, 1

2, 1 1, 2

1

1, 1 0, 1

1

1, 1 0, 1

22

2, 1 1, 2

2

2, 2 1, 2

Figure 2.3. When Ω = {0, 1, 2, 3}, a (2,Ω)-coding tree (left) and the correspond-
ing distance of every black node to vertex 1 (right).

(Te, de) encoded by the Brownian excursion of duration one e = (e(t), 0 ≤ t ≤ 1). The random
metric space (Te, de) is endowed with the probability measure µe which is the push-forward of the
Lebesgue measure on [0, 1].

We consider the CRT as a random point in the set K of all isometry-equivalence classes of
compact measured metric spaces equipped with the Gromov–Hausdorff–Prokhorov distance dGHP.
We recall the definition of this metric, starting with the definition of Hausdorff distance.

Given two compact subsets K1,K2 of a metric space (X, dX), their Hausdorff distance is

dH(K1,K2) = inf{ǫ > 0 | K2 ⊂ (K1)
ǫ,K1 ⊂ (K2)

ǫ}.
where Aǫ = {x ∈ X : infy∈A dX(x, y) < ǫ} is the ǫ-neighborhood of A. The Prokhorov distance
between two Borel probability measures µ1, µ2 on X is defined by

dP(µ1, µ2) = inf{ǫ > 0 | for all closed A ⊂ X : µ1(A) ≤ µ2(A
ǫ) + ǫ, µ2(A) ≤ µ1(A

ǫ) + ǫ}.
Let (X, d1, µ1), (Y, d2, µ2) be compact metric spaces equipped with Borel probability measures.

For any metric space (E, dE) and isometric embeddings ι1 : X → E and ι2 : Y → E we may
consider the push-forward measures µ1ι

−1
1 and µ2ι

−1
2 on E. The Gromov–Hausdorff–Prokhorov

distance between these two spaces is given by

dGHP((X, d1, µ1), (Y, d2, µ2)) = inf
ι1,ι2

max(dH(ι1(X), ι2(Y )), dP(µ1ι
−1
1 , µ2ι

−1
2 )),(2.16)

where the infimum is taken over all isometric embeddings ι1, ι2 fromX,Y into any possible common
space (E, dE).

The Gromov–Hausdorff–Prokhorov distance satisfies the axioms of a premetric on the collection
of compact metric spaces equipped with Borel probability measures. The corresponding metric on
the quotient space K is complete and separable. That is, K is a Polish space. For simplicity we
do not distinguish between a measured compact metric space and the corresponding equivalence
class.

The main result on which the present work builds is the scaling limit for large Galton–Watson
trees due to Aldous:

Theorem 5 ([5]). Let Tn be a critical Galton–Watson tree conditioned on having n vertices, where
the offspring distribution has finite nonzero variance σ2. Let µTn

denote the uniform measure on
the set of vertices of Tn. Then, as n tends to infinity, Tn with edges rescaled to length σ/(2

√
n)

converges in distribution to the CRT, i.e.,

(Tn,
σ

2
√
n
distTn

, µTn
)

d−→ (Te, de, µe)
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with respect to the Gromov–Hausdorff–Prokhorov distance.

Whenever there is no risk of confusion, we will write λX , instead of (X,λdX , µX) for any scalar
factor λ > 0 and any compact metric space (X, dX) that is equipped with a Borel probability
measure µX . Hence Theorem 5 may be stated by

σ

2
√
n
Tn

d−→ Te.

2.6. Local convergence. Let X denote the collection of rooted graphs that are connected and
locally finite. Given two rooted graphs G∗ = (G, vG) and H∗ = (H, vH) from X , we define the
distance

d(G∗, H∗) = 2− sup{m∈N0 |Um(G,vG)≃Um(H,vH )}

where Um(G, vG) denotes the rooted subgraph of G induced by all vertices with graph-distance
at most m from the root vG, and Um(G, vG) ≃ Um(H, vH) denotes that the two subgraphs are
isomorphic as rooted graphs. The distance d satisfies the axioms of a premetric and two elements
from X have distance zero from each other if and only if they are isomorphic as rooted graphs.
Hence d defines a complete and separable metric on the collection of all isomorphism classes of
graphs from X [15, 26].

A random rooted graph G
∗
n = (Gn, vn) from X converges in the local weak sense towards a

random element G∗
∞ = (G∞, v∞), denoted by

(Gn, vn)
d−→ (G∞, v∞),

if the corresponding isomorphism classes converge weakly with respect to the metric d. This is
equivalent to requiring that for all fixed positive numbers r, and for all rooted graphs (G, v) it
holds that

lim
n→∞

P[Ur(Gn, vn) ≃ (G, v)] = P[Ur(G∞, v∞) ≃ (G, v)].(2.17)

3. Proof of Theorem 1

We recall that Gn,k and G�
n,k = ϕ−1(Cn,k) are identically distributed as random graphs. Hence

it suffices to study the latter. We also recall Cn,k denotes a random ◦-rooted (k,Ω)-coding tree of
size n that is uniformly selected from the class Cn,k, and that Cn,k can be identified with a set of
◦ − • (k,Ω)-coding trees, all of which have the same white root as Cn,k.

We denote by Ln,k one of the largest ◦ − • (k,Ω)-coding trees that is contained in Cn,k and
denote by Ln,k the size of Ln,k. Equations (2.2) and (2.4) allow us to employ a unified analytic
framework given by Xavier Gourdon [35]. As mentioned in subsection 2.2 we assume that we are
in the aperiodic case, that is, we assume that z = ρk,Ω is the unique dominant singularity of Bk(z).
By general theory (see [28, 20]) it follows that the singular expansion of Bk(z) is given by

Bk(z) = g(z)− h(z)
√

1− z

ρk,Ω
(1 +O(z − ρk,Ω))

where g(z), h(z) are analytic around z = ρk,Ω and z may vary in a ∆-domain of ρk,Ω

∆ = {z ∈ C, |z| ≤ ρk,Ω(1 + η), | arg(z − ρk,Ω)| ≥ φ}
for some η > 0 and 0 < φ < π/2. Furthermore, in view of (2.2), we can express Ck(z) = F (Bk(z))
where F (w) =

∑

i∈Ω w
i(i!)−1 is an entire function. Thus, ρk,Ω is also the dominant singularity of

Ck(z). Hence, we are in the so-called non-critical case of [35]. By setting ℓ = 2, m = n− n1/2−ǫ,
β = 0 and α = 1/2 of Theorem 2 from [35], we have, for every ǫ (with 0 < ǫ < 1/2) and for some
constant c > 0

lim
n→∞

P[Ln,k ≤ n− n
1
2−ǫ] = lim

n→∞
(cn− 1

2 + o(n− 1
2 )) = 0.(3.1)

This implies that

dGHP

(

kHkσΩ
2
√
n
ϕ−1(Cn,k),

kHkσΩ
2
√
n
ϕ−1(Ln,k)

)

p−→ 0.
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Hence in order to prove the Gromov–Hausdorff–Prokhorov scaling limit for G�
n = ϕ−1(Cn,k) it

suffices to prove such a limit for the randomly sized Bk-object ϕ−1(Ln,k). We know that Ln,k

conditioned on having a fixed size is distributed like a uniform Bk-object of this size. As the
random size Ln,k tends weakly towards infinity, it is sufficient to show

kHkσΩ
2
√
n

G
•
n,k

d−→ Te(3.2)

with respect to the Gromov–Hausdorff–Prokhorov distance. (Recall that G•
n,k = ϕ−1(Bn,k).)

By Lemma 3 we may assume that Bn,k = (Bk : |Bk| = n). It is clear that any black node
has k white children and the number of black children ξ◦ of the white node in Bn,k, other than
the white root, follows the probability distribution (2.10). This implies that the number of black
grandchildren ξ•−• of any black node is the sum of k independent copies of ξ◦, that is,

ξ•−• = ξ◦,1 + ξ◦,2 + · · ·+ ξ◦,k, where ξ◦,i
d
= ξ◦.

So it satisfies

Eξ•−• = kEξ◦ = 1,(3.3)

where E ξ◦ = k−1 is obtained from (2.6) and (2.10), namely,

E ξ◦ =
∑

i∈Ω

i (Ck(ρk,Ω))
−1 (Bk(ρk,Ω))

i

i!
= k−1.(3.4)

For any two black nodes x, y in Bn,k, we set

dBn,k
(x, y) =

1

2
distBn,k

(x, y).(3.5)

For example, consider the (2,Ω)-coding tree in Figure 2.1. There we have n = 8 and k = 2. Let
x, y be the black nodes labelled by 6, 9 respectively. Then dB8,2(x, y) = 2. For the case k 6= 1,
the distance dBn,k

(x, y) of two black nodes x, y in Bn,k is different from the distance distG•

n,k
(x, y)

of x, y in the original Ω-k-tree G•
n,k. In order to represent the distances distG•

n,k
(x, y) for any two

black nodes x, y in the tree Bn,k, we need to decompose Bn,k into blocks according to the distance
table from Algorithm 1. We recall that Algorithm 1 marks every black node with a distance and
every white node with a distance sequence.

With the help of these labels, we define (so-called) i-blocks (i = 1, 2, . . .) that decompose the
random tree Bn,k. A 1-block of Bn,k is any subtree T of Bn,k such that

• T is rooted at the white root of Bn,k and T is induced by this node and all the black
descendants that are at distance one from vertex 1,

while an i-block of Bn,k, for i ≥ 2, is any subtree T of Bn,k such that

• T is rooted at a white node with distance sequence ((i − 1)k) and T is induced by this
node and all its black descendants that are at distance i from vertex 1.

Note that there is only one 1-block for any Bn,k, but for i ≥ 2, Bn,k could contain many i-blocks;
see Figure 3.1. For any two black nodes x, y in Bn,k, let

δBn,k
(x, y) = a− 1

where a is the minimal number of blocks necessary to cover the path connecting x and y. In
particular if x, y are in the same block of Bn,k, then δBn,k

(x, y) = 0. The following lemma will
show that, for any two black nodes x, y, the distance distG•

n,k
(x, y) is almost the same as the

block-distance δBn,k
(x, y).

Lemma 6. Let Bk be the random ◦ − • (k,Ω)-coding tree given by Lemma 3 and let Bn,k denote
the tree Bk conditioned on having n black nodes. Furthermore let G•

n,k = ϕ−1(Bn,k) be the corre-

sponding Ω-k-tree of Bn,k under the inverse bijection ϕ−1. Then for any two black nodes x, y of
G•
n,k,

(3.6) δBn,k
(x, y) ≤ distG•

n,k
(x, y) ≤ δBn,k

(x, y) + 3.
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(0, 12)

1

(13)
(23)

(33)
(33) (13)

(23)

(33)
(33)

(0, 12)

1

(13)

2

3 3

4

(23)

(33)
(33)

(0, 12)

(23)

(33)
(33)

(13)

(0, 12)

Figure 3.1. A decomposition of a random (3,Ω)-coding tree Bn,3 into blocks
(left) where the triple (a, b, c) of integers represents the distance sequence on the
root of the block. A spine (right) consists of selected nodes in Bn,3.

Proof. If x, y are in the same block, i.e., δBn,k
(x, y) = 0. If both of them are in a 1-block, then

distG•

n,k
(x, y) ≤ distG•

n,k
(x, 1) + distG•

n,k
(y, 1) = 2 = δBn,k

(x, y) + 2.

If both of them are in an (i+1)-block T for some i ≥ 1, recall that the root of any (i+1)-block is
a white node with distance sequence (ik). We assume that the root of T has label (a1, a2, . . . , ak).
Then for x ∈ T there exists an integer p such that distG•

n,k
(ap, x) = 1. Otherwise if for all 1 ≤ m ≤ k

we have distG•

n,k
(am, x) > 1. It follows that distG•

n,k
(x, 1) > i+ 1, which contradicts the fact that

x is contained in an (i + 1)-block. Similarly, there is an integer q such that distG•

n,k
(aq, y) = 1.

Consequently

distG•

n,k
(x, y) ≤ distG•

n,k
(ap, x) + distG•

n,k
(aq, y) + distG•

n,k
(aq, ap) = 3,

which implies (3.6).
If x, y are not in the same block, let b be the last common ancestor of x and y in Bn,k and we

suppose that b is a black node because the argument for the case when b is a white node follows
analogously. Let a1 (resp. b1) be the second black node on the path b− ν1− a1− · · ·− ◦−x (resp.
b− ν2− b1− · · · − ◦− y) in Bn,k. Then one of the shortest paths connecting x and y in G•

n,k must
pass node b, which implies that

distG•

n,k
(x, y) = distG•

n,k
(x, b) + distG•

n,k
(y, b).(3.7)

This is true because the Ω-k-tree corresponding to the subtree of Bn,k rooted at a1 and the Ω-k-tree
corresponding to the subtree of Bn,k rooted at b1 are completely disjoint if we remove all (k − 1)
common vertices of ν1 and ν2 from G•

n,k. These (k− 1) common vertices form a (k− 1)-clique and

one of these common vertices is b. We shall show that δBn,k
(x, y) ≤ distG•

n,k
(x, y). Note that

δBn,k
(x, b) = distG•

n,k
(x, 1)− distG•

n,k
(b, 1) ≤ distG•

n,k
(x, b)

and in the same way δBn,k
(y, b) ≤ distG•

n,k
(y, b), which, together with (3.7), implies that

δBn,k
(x, y) = δBn,k

(x, b) + δBn,k
(y, b) ≤ distG•

n,k
(x, b) + distG•

n,k
(y, b) = distG•

n,k
(x, y).

If x is contained in an (i + 1)-block, then there must exist a black node v1 on the path b −
◦ − a1 − · · · − ◦ − x, such that distG•

n,k
(x, v1) = 1 and v1 is contained in an i-block. For the

node v1, there exists a black node v2 on the path such that v2 is contained in an (i − 1)-block
and distG•

n,k
(x, v2) = 2. We continue this process until we reach a black node vt such that vt and

b are in the same block and distG•

n,k
(x, vt) = t = δBn,k

(x, b). Similarly, we can find a sequence

of black nodes w1, . . . , ws from different blocks such that ws and b are in the same block and



GRAPH LIMITS OF RANDOM GRAPHS FROM A SUBSET OF CONNECTED k-TREES 15

distG•

n,k
(y, ws) = s = δBn,k

(y, b). It follows that

δBn,k
(x, y) ≤ distG•

n,k
(x, y) ≤ distG•

n,k
(x, vt) + distG•

n,k
(y, ws) + distG•

n,k
(vt, ws)

= δBn,k
(x, b) + δBn,k

(y, b) + distG•

n,k
(vt, ws)

= δBn,k
(x, y) + distG•

n,k
(vt, ws).

Since vt and ws are in the same block, we have shown that distG•

n,k
(vt, ws) ≤ 3, as desired. �

Lemma 6 allows us to transfer the distance distG•

n,k
(x, y) of two vertices x, y in a random Ω-k-

tree G•
n,k to the distance δBn,k

(x, y) of two blocks in a random tree Bn,k. In order to prove the
convergence of G•

n,k to the CRT Te, it is, thus, sufficient to prove that with high probability the

difference between mkδBn,k
(x, y) and dBn,k

(x, y) is uniformly small for all choices of x, y, where
mk is a properly chosen constant. For this purpose we consider the spine of a size-biased (ξ•, ξ◦)-
multitype Galton–Watson tree. This construction is adapted from [1] and is a truncated version of
the infinite size-biased Galton–Watson tree introduced by Kesten [47], Lyons, Pemantle and Peres
[52]. Furthermore, this idea has been used in studying the scaling limit of random graphs from
subcritical graph classes [57] and was further generalized to the random R-enriched trees [62].

Let ξ̂◦ be a random variable with the size-biased distribution

(3.8) P[ξ̂◦ = q] = kq P[ξ◦ = q].

Note that this is a probability distribution on N+ = {1, 2, . . .} because ξ̂◦ ≥ 1 and E ξ◦ = k−1.

The size-biased (ξ•, ξ◦)-multitype Galton–Watson tree M̂(m), where m ≥ 1, is now defined
as follows. It starts with a black-mutant node r which is a black node and it has white-node
offspring according to ξ•; see (2.11). We now choose one of these white-node children uniformly
at random and call it white-mutant. Every other white-node offspring is called white-normal.

Each white-mutant node has black-node offspring according to ξ̂◦, while each white-normal node
has black-node offspring according to ξ◦ (see (2.10)) and all these black-node offspring are called
black-normal. We again choose one of the black-node children of the white-mutant node uniformly
at random and call it heir. All other black-node children are also called black-normal, where all
black-normal nodes have white-normal children according to independent copies of ξ•. The heir
is black-mutant if it has depth less than 2m, and we proceed recursively as long as the heir is
black-mutant. Finally if the heir has depth 2m, then all black nodes at this level are normal,
which again have white-normal offspring according to independent copies of ξ•.

Let hm denote the heir that is the (m + 1)-th black-mutant node of M̂(m), then the path

from the black root r to hm is called a spine of M̂(m). For simplicity, we adopt the notations of
B, T, T ∗, E(T ),L(T ∗) and outdegree sequence (d1, d2, . . . , dkn) of T from the proof of Lemma 3.
Our aim is to show that for every T ∗ ∈ E(T ) and every fixed spine γ of length 2m that connects
the root and v of T ∗ we have

P[M̂(m) = T ∗, hm = v] = P[M = T ∗].(3.9)

The probability that a given black-mutant node has one white-mutant child and this white-mutant

child has q black-node children where one of them is chosen as heir is, (kq)−1P[ξ̂◦ = q] = P[ξ◦ = q].
Hence,

P[M̂(m) = T ∗, hm = v] = (P[ξ• = k])n
kn
∏

i=1

P[ξ◦ = di] = P[M = T ∗],

which implies (3.9). We recall that Bk denotes a random (k,Ω)-coding tree that is generated in
Lemma 3. Our next claim is

(3.10) P[B̂(m)
k = B, hm = v] = P[Bk = B],

where B̂
(m)
k is a size-biased (k,Ω)-coding tree that is constructed as follows:

(1) Draw a sized-biased (ξ•, ξ◦)-multitype Galton–Watson tree M̂(m).

(2) Choose a uniform random labelling of M̂(m) such that all black nodes of M̂(m) are labelled

with distinct integers (k + 1), (k + 2), . . . , (k + |M̂(m)|).
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(3) Add a white root to M̂(m) and label it with (1, 2, . . . , k).

This construction is analogous to the one in Lemma 3, which, in combination with (3.9), implies
that

P[B̂(m)
k = B, hm = v] =

E(T )
|L(T ∗)|P[M̂

(m) = T ∗, hm = v] =
E(T )
|L(T ∗)|P[M = T ∗] = P[Bk = B].

That is, (3.10) is true. This relation shows, once the spine γ is fixed, that the probability that the

size-biased tree B̂
(m)
k equals B is the same as the probability of the event Bk = B (see equation

(3.2) from [1] for a size-biased Galton–Watson tree and Figure 3.2 for an example).

(0, 12)
(13)

1

(0, 12)

2 2

(12, 2)
2

(1, 22)
2

(23)

2

2

(23)

3
(33)

4

(13)

1

2 2

(12, 2)
2

(1, 22)
2

(23)

2

2

(23)

3
(33)

4

(0, 12)

(0, 12)

(0, 12) (0, 12)

(13)

(23)

(13)

(23)

Figure 3.2. A (3,Ω)-coding tree B3 (left) and a size-biased one B̂
(m)
3 with a spine

γ consisting of all black-mutant nodes and white-mutant nodes (right), where
every black node is marked with a distance and every white node is marked with
a distance sequence.

Lemma 7. Let Bn,k be the class of ◦− • (k,Ω)-coding trees of size n such that the white root has
label (1, 2, . . . , k) and let Bn,k ∈ Bn,k be selected uniformly at random. Let mk = kHk and let r be
the only black-node child of the white root of Bn,k. Then for all 0 < s, ǫ < 1/2 and for every black
node v ∈ Bn,k such that dBn,k

(r, v) ≥ ns, the property

|dBn,k
(r, v)−mkδBn,k

(r, v)| ≤ ǫ dBn,k
(r, v)(3.11)

holds with probability tending to 1 as n tends to infinity.

Proof. Suppose that the opposite of (3.11) is true, i.e., there exists v∗ ∈ Bk such that

dBk
(r, v∗) ≥ |Bk|s and |dBk

(r, v∗)−mkδBk
(r, v∗)| > ǫ dBk

(r, v∗).

For any such Bk, fix one black node v∗ ∈ Bk having this property. Furthermore let F1 be the
collection of all such pairs (Bk, v

∗). We are going to show that

P[(Bk, v
∗) ∈ F1

∣

∣ |Bk| = n]→ 0, as n→∞.
With the help of Lemma 3 and by applying [20, Theorem 2.19]) we obtain, with σ2

Ω = kVar ξ◦,
the asymptotic relation

P[|Bk| = n] =
bk,Ω(n)ρ

n
k,Ω

n!Bk(ρk,Ω)
∼ n−3/2

σΩ
√
2π

as n→∞.(3.12)
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Consequently, we have

P[(Bk, v
∗) ∈ F1

∣

∣ |Bk| = n] = (P[|Bk| = n])−1P[(Bk, v
∗) ∈ F1 and |Bk| = n],

= (σΩ
√
2π)n3/2P[(Bk, v

∗) ∈ F1 and |Bk| = n].(3.13)

Furthermore,

P[(Bk, v
∗) ∈ F1 and |Bk| = n] ≤

∑

ns≤m≤n

∑

(B,v)∈F1

dB(r,v)=m

P[Bn,k = B].(3.14)

Now for any (B, v) ∈ F1 we consider the spine of B that ends at v. Then from (3.10) we see that
∑

(B,v)∈F1

dB(r,v)=m

P[Bn,k = B] =
∑

(B,v)∈F1

|B|=n

P[B̂(m)
k = B, hm = v].(3.15)

Let r, h1, h2, . . . , hm−1, hm be the black-mutant nodes contained in the spine of B̂
(m)
k , and let

δi = δ
B̂
(m)
k

(r, hi) be the block-distance of every hi to r. It follows from (3.13), (3.14) and (3.15)

that

P[(Bk, v
∗) ∈ F1

∣

∣ |Bk| = n] ≤ (σΩ
√
2π)n3/2

∑

ns≤m≤n

pm,(3.16)

where pm denotes the probability, that the block-distance δm of hm to r in the random size-biased

(k,Ω)-coding tree B̂
(m)
k satisfies |mkδm −m| > ǫm.

Set ϑi = δi + 1, where ϑi equals the graph-distance of hi to vertex 1 in the corresponding Ω-

k-tree ϕ−1(B̂
(m)
k ). In other words, after we implement Algorithm 1 on B̂

(m)
k , the distance marked

on hi is equal to ϑi.
From Algorithm 1 we observe that ϑi+1 only depends on ϑi and the distance sequence of the

white node that has hi as a child. Let Xi ≥ 1 be the number of integers contained in this distance
sequence that equal ϑi − 1, as a result, (Xi, ϑi)i is a Markov chain that starts at (X0, ϑ0) = (1, 1)
where X0 = 1 counts the number of zeros in the distance sequence of the white root (0, 1k−1) and
ϑ0 = 1 is the distance marked on r after using Algorithm 1. Here, for all i ≥ 1,

((Xi, ϑi)||Xi−1 = x, ϑi−1 = d)

is distributed as follows.

• We consider a Bernoulli random variable τ with P[τ = 1] = Xi−1/k and P[τ = 0] =
1− (Xi−1/k). That is, we make a Bernoulli (Xi−1/k) choice.

• If τ = 1 and x ≥ 2 we set (Xi, ϑi) = (x−1, d), if τ = 1 and x = 1 we set (Xi, ϑi) = (k, d+1),
and if τ = 0 we set (Xi, ϑi) = (x, d).

In particular, (Xi)i is a Markov chain with state space {1, 2, . . . , k} and transition matrix

P =



















k−1
k 0 0 . . . 0 1

k
2
k

k−2
k 0 . . . 0 0

0 3
k

k−3
k . . . 0 0

0 0
. . .

. . . 0 0
0 0 . . . k−1

k
1
k 0

0 0 . . . 0 1 0



















.

The stationary distribution π = (πi)
k
i=1 satisfies π = πP , which yields

π = (πi)
k
i=1 =

1

Hk
(1,

1

2
, . . . ,

1

k
).

Since (Xm, ϑm) is a Markov-additive process, we apply a general large deviation result for these
processes [51, Thm. 3.3] and obtain that for every ǫ∗ > 0, there is a constant c(ǫ∗) > 0 such that

P[|m−1(δm + 1)− µ| > ǫ∗] ≤ exp(−c(ǫ∗)m)
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holds for all m, ns ≤ m ≤ n, where µ = π1/k = (kHk)
−1 = m

−1
k is the mean of a typical step of

the chain in the stationary state. This implies that pm is exponentially small. Hence, from (3.16)
we conclude that P[(Bk, v

∗) ∈ F1

∣

∣ |Bk| = n] → 0 as n → ∞, which completes the proof of the
lemma. �

Now we are ready to prove our first main result.

Proof of Theorem 1. We recall that the number of black grandchildren ξ•−• of any black node
in Bn,k satisfies E ξ•−• = kE ξ◦ = 1; see (3.3). Furthermore, Var ξ•−• = kVar ξ◦. From (2.10) it
follows immediately that 0 < Var ξ◦ <∞, we thus have 0 < Var ξ•−• <∞.

Let Sn be a critical Galton–Watson tree conditioned on having size n, where the number of
offspring follows the distribution of the random variable ξ•−•. Then by applying Theorem 5 we
obtain

(Sn,
σΩ
2
√
n
distSn

, µSn
)

d−→ (Te, de, µe) in the metric space (K, dGHP),

where 0 < σ2
Ω = Var ξ•−• <∞. Since dGHP((Sn, distSn

, µSn
), (Bn,k, dBn,k

, µBn,k
)) = 0, we have

(3.17) (Bn,k,
σΩ
2
√
n
dBn,k

, µBn,k
)

d−→ (Te, de, µe) in the metric space (K, dGHP).

In order to prove Theorem 1, it suffices to show (3.2), as we have argued in subsection 2.1 and
Section 3. In view of ϕ(G•

n,k) = Bn,k, Lemma 6 and (3.17), it is also sufficient to prove

dGHP((Bn,k,
dBn,k√
n
, µBn,k

), (Bn,k,
mkδBn,k√

n
, µBn,k

))
p−→ 0.(3.18)

Let r be the only black-node child of the white root of Bn,k, then for any two black nodes u, v of
Bn,k, let o be the last common ancestor of u, v. Without loss of generality, suppose that o is a
black node, then one can easily check that

|δBn,k
(u, v)− (δBn,k

(r, u) + δBn,k
(r, v) − 2δBn,k

(r, o))| = 0

which is also true if δBn,k
is replaced by dBn,k

. Thus, in order to show (3.18), we only need to
prove

1√
n

sup
v∈Bn,k

|dBn,k
(r, v)−mkδBn,k

(r, v)| p−→ 0.(3.19)

Since δBn,k
(r, v) ≤ dBn,k

(r, v), we find that (3.19) is true for all v ∈ Bn,k such that dBn,k
(r, v) < ns

for 0 < s < 1/2. So we only need to consider vertices v ∈ Bn,k such that dBn,k
(r, v) ≥ ns.

It follows from Lemma 7 that

1√
n

sup
v∈Bn,k

|dBn,k
(r, v)−mkδBn,k

(r, v)| ≤ ǫ dBn,k
(r, v)√
n

=
ǫ distSn

(r, v)√
n

≤ ǫH(Sn)√
n

holds with probability tending to 1 as n tends to infinity, where H(Sn) is the height of Sn. By
applying the tail-bounds and the left-tail upper bounds for the height H(Sn) of Sn (see [1]), we
conclude that ǫH(Sn)/

√
n tends to zero as n tends to infinity. In consequence, (3.19) is true. This

finally completes the proof of Theorem 1. �

4. Proof of Theorem 2

In this section, we are going to construct an infinite Ω-k-tree G∞,k that is rooted at a front
of distinguishable vertices. We then establish the convergence of G◦

n,k toward this random graph

in the sense, that for each fixed integer ℓ ≥ 0 the front-rooted sub-Ω-k-tree Uℓ(G
◦
n,k) that is

induced by all vertices at distance at most ℓ from the marked front, converges in distribution to
the corresponding sub-Ω-k-tree Uℓ(G∞,k) of the limiting object.

By the discussion in subsection 2.1, the random Ω-k-tree G◦
n,k is up to relabelling distributed

like the Ω-k-tree G�
n,k that is rooted at a fixed front with labels from 1 to k. Hence we only

need to study the neighborhoods of the root-front. If we distinguish any fixed vertex of the
marked front in G�

n,k, for example the vertex with label 1, and also distinguish a fixed vertex of
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the marked front in G∞,k, then our limit may be interpreted as a classical local weak limit of a
sequence of vertex-rooted random graphs as discussed in subsection 2.6. This may be justified by
the following two arguments. First, as rooted graphs, all k possible vertex-rootings of G�

n,k are
identically distributed, and we shall see below that the same is true for the limit G∞,k. Second, the
ℓ-neighborhood of a vertex of any front-rooted Ω-k-tree is always a subgraph of the ℓ-neighborhood
of the marked front, and hence weak convergence of the neighborhoods of the front implies weak
convergence of the neighborhoods of the vertices.

ψ

Figure 4.1. Construction of (k,Ω)-coding trees out of plane trees where the
outdegree of each vertex is a multiple of k, illustrated for the special case k = 2.

The strategy of the proof is as follows. We generate a random Ω-k-tree G�
n,k by applying the

bijection ϕ−1 : Cn,k → G�n,k to the random (k,Ω)-coding tree Cn,k. This random coding tree may

be generated by conditioning Ck on having n black nodes (as done in Lemma 4). We observe
that any ordered tree of white vertices where the outdegree of every vertex is a multiple of k
may be interpreted as a (k,Ω)-coding tree by adding black vertices in a canonical way. Here
different plane trees correspond to the same unlabelled (k,Ω)-tree, but this will not be an issue.
We use this construction in order to formulate a coupling of the random (k,Ω)-coding tree Ck with
a Galton–Watson tree T◦ that has a modified root-degree. If we condition this locally modified
Galton–Watson tree on having (kn+1) vertices, then the result Tn,◦ corresponds, up to relabelling,
to the (k,Ω)-coding tree Cn,k. By the same kind of arguments that provide local convergence of
simply generated trees, we obtain that the random tree Tn,◦ converges weakly toward an infinite
plane tree T∞,◦, which may be interpreted as a (k,Ω)-coding tree C∞,k, and consequently also
as a front-rooted Ω-k-tree G∞,k. The final step in the proof is to deduce local convergence of a

random Ω-k-tree G�
n,k from this convergence of random trees.

The construction of a (k,Ω)-coding tree ψ(T ) out of a plane tree T , where the outdegree of
each vertex is a multiple of k, is straight-forward. We canonically partition the offspring set of
each vertex v of T into an ordered list of groups G1(v), G2(v), . . . of k consecutive vertices. The
edges between v and its offspring are then deleted, and for each group Gi(v), we add a black
offspring vertex ui(v) to v and add further edges such that Gi(v) is the offspring set of ui(v). This
construction is illustrated in Figure 4.1.

We may now use this to formulate a coupling of a critical Boltzmann distributed (k,Ω)-coding
tree with a modified Galton–Watson tree. Recall that in Lemma 4 we constructed a random
(k,Ω)-coding tree Ck by starting with a white root, and connecting it with the roots of a random
number η◦ of independent ◦− • (k,Ω)-coding trees, where each of them is sampled independently
according to the random treeM. Recall that the tree M starts with a black node with k white
nodes as offspring. Each of the white nodes receives a random number ξ◦ of black nodes, which
follows the distribution given in (2.10). Then the sampler is applied recursively. That is, every
black node receives k white nodes as offspring and each of them receives a random number of
black offspring, and so on.

Let T◦ denote a modified Galton–Watson tree, where each vertex receives offspring according
to an independent copy of ξ := kξ◦, except for the root, which receives offspring according to
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η := kη◦. The order in which the recursion takes place in M does not matter, hence the (k,Ω)-
coding tree ψ(T◦) is up to relabelling distributed like a (k,Ω)-coding tree Ck. Moreover, let Tn,◦

denote the tree T◦ conditioned on having (kn + 1) vertices, then ψ(Tn,◦) is distributed as the
random (k,Ω)-coding tree Cn,k.

Note that (3.4) implies that Eξ = 1, and both ξ and η have finite exponential moments. We
define the size-biased versions of these offspring distributions by

P[ξ̂ = i] = iP[ξ = i] and P[η̂ = i] = iP[η = i]/Eη.

Let T∞,◦ denote the following random infinite (but locally finite) plane tree. There are two types
of non-root vertices, mutant and normal. The root receives offspring according to η̂, and one of
its sons is selected uniformly at random and declared mutant, whereas the others are normal.
Normal vertices receive offspring according to an independent copy of ξ, all of which are normal.

Mutant vertices receive offspring according to an independent copy of ξ̂, and among them one is
selected uniformly at random and declared mutant, whereas the others are normal. Hence T∞,◦

is an infinite plane tree with a distinguished path that starts at the root and traverses the mutant
vertices. We call this path the spine of T∞,◦.

We describe the convergence of the random tree Tn,◦ toward the limit tree T∞,◦ using a slight
modification of the arguments in Janson’s survey [42]. For each plane tree T and each integer
h ≥ 0 let T [h] denote the tree obtained by cutting away all vertices at height larger than h.

Lemma 8. For every integer h ≥ 0, it holds that T
[h]
n,◦

d−→ T
[h]
∞,◦.

Proof. It suffices to show, for each plane tree T at height h, that

lim
n→∞

P[T[h]
n,◦ = T ] = P[T[h]

∞,◦ = T ].(4.1)

As T∞,◦ has infinite height, this already implies that H(Tn,◦) ≥ h occurs with probability tending

to 1, and consequently T
[h]
n,◦

d−→ T
[h]
∞,◦. In order to check (4.1), let d1, . . . , dt denote the depth-first-

search ordered list of the outdegrees of all vertices in the pruned tree T [h−1]. Moreover, let (ξi)i∈N

denote a family of independent copies of ξ. Set N = kn+1 and D = d1+ · · ·+dt. The probability
P[|T◦| = N,T

[h]
◦ = T ] is given by

P[η = d1] ·
t
∏

j=2

P[ξ = dj ] · P



D +
N
∑

j=t+1

ξj = N − 1, D +
m
∑

j=t+1

ξj ≥ m for all t < m < N



 .(4.2)

A classical combinatorial observation, also called the cycle lemma, states that for any sequence
x1, . . . , xs ≥ −1 of integers satisfying

∑s
i=1 xi = −r for some r ≥ 1, there are precisely r integers

1 ≤ u ≤ s such that the cyclically shifted sequence x
(u)
i = x1+(i+u) mod s satisfies

∑ℓ
i=1 x

(u)
i > r

for all 1 ≤ ℓ ≤ s− 1; see for example [42, Lem. 15.3]. Consequently, (4.2) may be simplified to

D − t+ 1

N − t · P[η = d1]

t
∏

j=2

P[ξ = dj ] · P



D +

N
∑

j=t+1

ξj = N − 1



 .(4.3)

The tree T has precisely (D − t+ 1) vertices at height h. Hence the event T
[h]
∞,◦ = T corresponds

to precisely (D − t + 1) possible outcomes for the first (h + 1) levels of T∞,◦, depending on the
location for the unique spine vertex at height h. Each outcome has the same probability

(Eη)−1 · P[η = d1] ·
t
∏

j=2

P[ξ = dj ].

Thus, P[T[h]
∞,◦ = T ] = (D − t+ 1)(Eη)−1P[η = d1]

∏t
j=2 P[ξ = dj ] and (4.2) is simplified to

P[|T◦| = N,T
[h]
◦ = T ] = P[T[h]

∞,◦ = T ] · Eη
N − t · P



D +
N
∑

j=t+1

ξj = N − 1



 .
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The local central limit theorem for the sum of independent and identically distributed random
integers yields that

P



D +

N
∑

j=t+1

ξj = N − 1



 = (1 + o(1))
k gcd (Ωout)
√

2πNVar[ξ]

which implies

P[|T◦| = N,T
[h]
◦ = T ] = (1 + o(1))P[T[h]

∞,◦ = T ]n−3/2 Eη gcd (Ωout)√
2πkVarξ

.(4.4)

Let d(o) denote the root-degree of T◦. It holds, since ζ has finite exponential moments, that
P[η ≥ log(n)2] is exponentially small. Hence, using the cycle lemma and the central local limit
theorem in an identical fashion as above, it follows that

P[|T◦| = N ] = o(n−3/2) +

log(n)2
∑

d=1

P[η = d]
d

N − 1
P[d+

N
∑

j=2

ξj = N − 1]

= (1 + o(1))n−3/2Eη
gcd (Ωout)√
2πkVarξ

,

which, together with (4.4), implies (4.1), which completes the proof. �

We are now finally in the position to complete the proof of our second main theorem.

Proof of Theorem 2. Let ℓ be an integer and let G be an arbitrary finite unlabelled Ω-k-tree that
is rooted at a front. We claim that there exist an integer L ≥ 0, that depends on both ℓ and G, and
a set E of finite plane trees, such that any plane tree T , that corresponds to a (k,Ω)-coding tree
ψ(T ) and hence to a front-rooted Ω-k-tree G(T ) := ϕ−1(ψ(T )), has the property Uℓ(G(T )) = G
if and only if T [L] ∈ E.

Before we prove the claim, we show that Theorem 2 is a direct consequence of this claim. By
Lemma 8 we have

lim
n→∞

P[T[L]
n,◦ ∈ E] = P[T[L]

∞,◦ ∈ E]

and consequently

lim
n→∞

P[Uℓ(G
◦
n,k) = G] = P[Uℓ(G∞,k) = G],

where G∞,k denotes the Ω-k-tree corresponding to T∞,◦, as desired.
In order to prove the existence of such an integer L and a set E we argue as follows. To each

plane tree T we associate a unique sequence of increasing subtrees T0, T1, . . . of T that all contain
the root-vertex of T and have the property G(Ti) = Ui(G(T )) for all i. Of course, the tree Tℓ may,
in general, have arbitrarily large height. However, in order to satisfy G(Tℓ) = G, the tree Tℓ may
not have more vertices than the number of fronts in G. In particular, the height of Tℓ is bounded
by the number of fronts of G. Hence there exists a finite integer L such that for every plane tree
T we may decide whether Uℓ(G(T )) = G is true or not just by looking at T [L]. �
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[43] S. Janson, T. Jonsson and S. Ö. Stefánsson, Random trees with superexponential branching weights, J. Phys.
A: Math. Theor., 44 (2011), 485002.

[44] S. Janson and S. Ö. Stefánsson, Scaling limits of random planar maps with a unique large face, Annals of
Probability, 43(3) (2015), pp. 1045-1081.
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